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MovEMETHOD is a hallmark refactoring to remedy the lack of code modularity and remove several code smells
that contribute to technical debt. Despite a plethora of research tools that recommend which methods to move
and where by optimizing software quality metrics, these recommendations do not align with how expert
developers perform MovEMETHOD. We hypothesize that given the huge training of Large Language Models
and their reliance upon the naturalness of code, they should be better at recommending which methods are
misplaced in a given class and which classes are better hosts for such misplaced methods. Moreover, their
recommendations should better align with experts. Our formative study of 2016 LLM recommendations revealed
that LLMs give expert suggestions, yet they are unreliable: up to 80% of the suggestions are hallucinations.
We introduce the first LLM-powered assistant for MOVEMETHOD refactoring that automates its whole end-
to-end lifecycle, from recommendation to execution. We designed novel solutions to overcome the limitations
of LLM-based MovEMETHOD refactoring. We automatically filter LLM hallucinations using static analysis from
IDEs and a novel workflow that requires LLMs to be self-consistent, critique, and rank refactoring suggestions.
Moreover, MOVEMETHOD refactoring requires global, project-level reasoning to determine the best target
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classes where to relocate a misplaced method. We solved the limited context size of LLMs by employing
refactoring-aware retrieval augment generation (RAG). We implemented our approach as an Intelli] IDEA
plugin, MM-Ass1sT, that works for Java code. It synergistically combines the strengths of the LLM, IDE, static
analysis, and semantic relevance. MM-AssIST generates candidates, filters LLM hallucinations, validates and
ranks recommendations, and then finally executes the correct refactoring based on user approval. In our
thorough, multi- methodology empirical evaluation, we compare MM-AssisT with the previous state-of-the-art
approaches. MM-AssisT significantly outperforms them: on a benchmark widely used by other researchers,
our Recall@1 and Recall@3 are 73% and 80%, respectively, which is a 2x improvement over previous state-of-
the-art approaches (33% and 37%). Moreover, we extend the corpus used by previous researchers with 210
actual refactorings performed by Open-source software developers in 2024; MM-AssIST achieves even more
significant improvements over previous tools, our Recall@1 is 71%, and Recall@3 is 82%, compared to 20%
for FETRUTH- this is an almost 4x improvement. Lastly, we conducted a user case study with 30 experienced
participants who used MM-AssisT to refactor their own code for one week. They rated 82.8% of MM-AsSIST
recommendations positively. This shows that MM-Assi1sT is both effective and useful.

ACM Reference Format:

Fraol Batole, Abhiram Bellur, Malinda Dilhara, Yaroslav Zharov, Timofey Bryksin, Kai Ishikawa, Haifeng
Chen, Masaharu Morimoto, Motoura Shota, Takeo Hosomi, Tien N. Nguyen, Hridesh Rajan, Nikolaos Tsantalis,
and Danny Dig. 2025. Together We Are Better: LLM, IDE and Semantic Embedding to Assist Move Method
Refactoring. 1, 1 (January 2025), 22 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

MoveEMETHOD is a key refactoring technique [20] that moves a misplaced method from its original
class (source) to a more suitable target class. A method is considered misplaced when it doesn’t
interact with its own class’s state or relies more on the state of another class. Developers use
MovEMETHOD to improve modularity by grouping related behavior (methods) with the data (fields)
it affects, which enhances class cohesion and reduces coupling between classes. MOVEMETHOD
helps eliminate several code smells, such as FeatureEnvy [49], GodClass [4], DuplicatedCode [28],
and MessageChain [20]. Thus, MOvEMETHOD reduces technical debt and is one of the top-5 most
common refactorings [35, 37, 50], in both manual and automated settings.

The MoveMETHOD lifecycle comprises four phases: (i) identifying a misplaced method m in
its host class H, (ii) finding a more suitable target class T, (iii) ensuring refactoring pre- and post-
conditions to preserve program behavior, and (iv) executing the refactoring mechanics (i.e., source
code transformation). Each phase presents challenges. Identifying candidates requires a solid grasp
of design principles and the entire codebase, while checking preconditions [39, 49] involves complex
static analysis. The mechanics also pose difficulties, such as relocating m, updating its call sites,
and adjusting field and method accesses. Due to such complexities, most existing solutions don’t
provide an end-to-end solution; IDEs focus on preconditions and mechanics, while research tools
mainly identify refactoring opportunities.

The research community has proposed various approaches [5, 6, 11, 24, 29, 30, 32, 47, 49] for
recommending misplaced methods or new target classes, typically optimizing software quality
metrics like cohesion and coupling. These approaches fall into three categories: (i) static analysis-
based [5, 47, 49], (ii) machine learning classifiers [6, 11, 24], and (iii) deep learning-based [29, 30, 32].
However, static analysis approaches rely on expert-defined thresholds, and ML/DL methods need
constant retraining as coding standards and practices evolve. Additionally, their recommendations
often don’t align with how expert developers perform MovEMETHOD in practice.

We hypothesize that achieving good software design that is easy to understand and resilient
to future changes is a balancing act between science (e.g., metrics, design principles) and art (e.g.,
experience, expertise, and intuition about what constitute good abstractions). This can explain why
code optimized via software quality metrics is not always accepted in practice [15-17, 19, 23, 45].
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In this paper, we introduce the first approach to automate the entire MOvEMETHOD refactoring
lifecycle using Large Language Models (LLMs). We hypothesize that, due to their extensive pre-
training on billions of methods and their reliance on the naturalness of code, LLMs can generate an
abundance of MovEMETHOD recommendations. We also expect LLM recommendations to better
align with expert practices. We use GPT-40, which has demonstrated superior performance on
programming tasks [1, 8] and is widely adopted in developer productivity tools [12, 21]. In our for-
mative study, we found LLMs are prolific in generating suggestions, averaging 6 recommendations
per class. However, two major challenges must be addressed to make this approach practical.

First, LLMs can produce hallucinations, i.e., recommendations that seem plausible but are flawed.
In our formative study of 2016 LLM recommendations, we identified three types of hallucinations:
(i) LLM suggests target classes that do not exist in the project, (ii) it is impossible to move a method
in the suggested target class, and (iii) LLM identifies invalid methods as misplaced in a host class.
Our findings reveal that up to 80% of LLM recommendations are hallucinations. This requires
further processing to enhance LLM reliability.

We discovered novel ways to automatically eliminate LLM hallucinations. We complement LLM
reasoning (i.e., the creative, non-deterministic, and artistic part akin to human naturalness) with
static analysis embedded in the IDE (i.e., the rigorous, deterministic, scientific part) to achieve better
results. Mature refactoring implementations in existing IDEs like Intelli] IDEA contain a plethora
of static analysis checks (called refactoring preconditions [39]) that must be true before a method
can be safely moved to another class. We leverage these refactoring preconditions to validate LLM
recommendations. Moreover, we compute semantic similarity between each method and its host
class using code-trained embeddings, identifying the least cohesive methods and focus the LLM
on these methods. These stages effectively removed all LLM hallucinations. We present these
techniques in Section 3.2.

Second, MOVEMETHOD refactoring requires global, project-level reasoning to determine the best
target classes where to relocate a misplaced method. However, passing an entire project in the
prompt is beyond the limited window size of current LLMs [52]. Even with future versions of LLMs
that continuously increase the window size, passing the whole project as context introduces noise
and redundancy, as not all classes are relevant; instead this further distracts the LLM [36, 52].

We address the limited context size of LLMs by using retrieval augmented generation (RAG) to
enhance the LLM’s input with relevant project-specific information for better decision-making.
However, a naive approach of retrieving all similar classes would be ineffective and worsen the
hallucination problem. Instead, we first apply IDE-based static analysis to identify mechanically
feasible target classes, significantly narrowing the search space and reducing hallucinations. While
static analysis ensures feasibility, we also leverage semantic relevance to find a suitable target class.
We utilize VoyageAl [53], which has demonstrated state-of-the-art performance in code-related
tasks [54]. This two-step process combines mechanical feasibility with semantic relevance, enabling
our approach to make informed decisions and perform global project-level reasoning. We coin this
approach refactoring-aware retrieval augmented generation, which addresses LLM hallucinations and
context limitations while fulfilling the specific needs of MovEMETHOD refactoring (see Section 3.3).

We designed, implemented, and evaluated these novel solutions as an Intelli] IDEA plugin for
Java code, MM-AssisT. It synergistically combines the strengths of the LLM, IDE, static analysis,
and semantic relevance. MM-AssIST generates candidates, filters LLM hallucinations, validates and
ranks recommendations, and then finally executes the correct refactoring based on user approval.

We designed a comprehensive, multi-methodology evaluation of MM-ASSIST to corroborate,
complement and expand research findings: formative study, comparative study, replication of
real-world refactorings, repository mining, user/case study, and questionnaire surveys. Among
others, our formative study of 2016 LLM recommendations reveal the strengths and weaknesses
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of using LLMs for recommending MovEMETHOD refactorings. To quantify the improvements
of MM-Assi1sT over the vanilla LLM solution, we conducted an ablation study that shows MM-
AssIsT brings significant improvements. Moreover, we compare MM-AssisT with the previous
best in class approaches in their respective markets: JMove [47], which uses static analysis, and
FETRUTH [29], which uses Deep Learning; these have been shown previously to outperform all
previous MOvEMETHOD recommendation tools. Using a synthetic corpus widely used by previous
approaches, we found that MM-AssisT significantly outperforms them: for instance methods, our
Recall@1 and Recall@3 are 73% and 80%, respectively, which is an almost double improvement
over previous state-of-the-art approaches (40% and 42%). Moreover, we extend the corpus used by
previous researchers with 210 actual refactorings that we mined from OSS repositories in 2024 (thus
avoiding LLM data contamination), containing both instance and Java static methods. We compared
against JMovE and FETRUTH on this real-world oracle, and found that MM-AssIST significantly
outperforms previous tools. Our Recall@1 is 71%, and Recall@3 is 82%, compared to the previous
best tool, FETRUTH, which achieved a Recall@3 of 20% — this is a 4x improvement. This shows that
MM-AssisT’s recommendations better align with human developer best practices.

To recommend which method(s) to move from a class, previous tools require analyzing an entire
project — which takes between 2 hours for medium projects to more than 10 hours for 1M LOC
projects, and they overwhelm the user with up to 40 recommendations per class. MM-ASSIST is
modular: it takes on average 30 seconds (even on projects with tens of thousands of classes), and it
shows no more than 3 high quality recommendations per class. Thus, MM-AssIsT is practical.

To better understand how developers use MM-ASsIST in practice, we recruited 30 experienced
participants who used it on their own code for a week and provided telemetry data. Unlike previous
studies that had participants assess recommendations on unfamiliar third-party code, our study
allows participants to evaluate recommendations on code they deeply understand. Results show that
82.8% of participants rated MM-Ass1isT’s recommendations positively and preferred our LLM-based
approach over classic IDE workflows. One participant remarked, ‘T am fairly skeptical when it comes
to Al in my workflow, but still excited at the opportunity to delegate grunt work to them.”

This paper makes the following contributions:

e Approach. We present the first LLM-powered assistant that supports the lifecycle of rec-
ommending and applying MovEMETHOD refactorings. Our tool offers key advantages: (i) it
ensures the recommendations are feasible and executes them correctly upon user approval,
(ii) it requires no user-specified thresholds or model (re)-training, making it more future-proof
as LLMs evolve, and (iii) it handles both instance methods — like other solutions — and static
methods, which others avoid due to the large search space.

o Best Practices. We discovered a new set of best practices to overcome the LLM limitations
when it comes to refactorings that require global reasoning. We automatically filter LLM
hallucinations and conquer the LLM’s limited context size using refactoring-aware RAG.

e Implementation. We designed, implemented, and evaluated these ideas in an IntelliJ plugin,
MM-AssisT, that works on Java code. It addresses practical considerations for tools used in
the daily workflow of software developers.

e Evaluation. We thoroughly evaluated MM-AssisT, and it outperforms previous best-in-class
approaches. We also created an oracle replicating actual refactorings done by OSS developers,
where MM-AssisT showed even more improvements. A user study confirms that developers
prefer our LLM-based assistant, demonstrating that MM-AssIsT aligns with and replicates
real-world expert logic.
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public class Esqg
private Policy

1 /* Resolves a set of policies and adds them to
-~ policyResolver;
@ a given resolution.*/

private vo

id resolvePolicy (

public void execute (EsqlQue request, ...){

ActionListener groupedListener,

LOGGER. debug (" A\n{}", request.query()); ...}

t policyNames,

private arse (String query, ...) {...}
Resolution resolution) {
public void analyzedPlan(...) {...}
public void optimizedPlan(...) {...}
for (policyName : policyNames) {
policyResolver.resolvePolicy (
private void preAnalyze(...) {

policyName,

resolution.resolvedPolicies () : :add)

l resolvePolicy (groupedListener, policyNames, resolution),‘]

o ®
policyResolver.resolvePolicy(...); l }

Fig. 1. A real-world example demonstrating a MOVEMETHOD on resolvePolicy performed by developers in
the Elasticsearch project, commit 876e7015

2 MOTIVATING EXAMPLE

We illustrate the challenges of recommending MOVEMETHOD using a real-world refactoring that
occurred in the Elasticsearch project — a distributed open-source search and analytics engine. We
illustrate the refactoring in Figure 1, and the full commit can be seen in [18]. The resolvePolicy
method (See @ in Figure 1), originally part of the EsqlSession class, is misplaced. While EsqglSession
handles parsing and executing queries, resolvePolicy is responsible for resolving and updating
policies. Specifically, resolvePolicy accesses the field policyResolver (See @) and parameters like
groupedListener, policyNames, and resolution. Recognizing this misalignment, the developers refac-
tored the code by moving resolvePolicy to the PolicyResolver class (not shown in the figure due to
space constraints), updating the method body accordingly, and modifying the call sites (See (3)).
After the refactoring, both EsqlSession and PolicyResolver became more cohesive.

Automating the identification of such refactoring opportunities is essential for maintaining
software quality, but it poses significant challenges for existing tools. We first applied the state-
of-the-art Feature Envy detection technique, FETRUTH [29], to this scenario. However, FETRUTH
failed to recommend the actual refactoring performed by the developers. Instead, it suggested
moving fieldNames(...), which is a method highly cohesive with the class’s primary responsibilities.
Since FETRUTH relies on training DL models for refactoring tasks using real-world datasets, this
result highlights that even specialized DL models may not capture all refactoring scenarios where
domain-specific knowledge or project-specific design patterns play key roles.

Next, we ran JMoVE [47], a state-of-the-art MOVEMETHOD recommendation tool that solely relies
on static analysis. To analyze the whole project JMoVE requires more than 12 hours. To speed up
JMovVE, we ran it on a sub-project of Elasticsearch containing EsqlSession. Unfortunately, JMovE did
not produce any recommendations for the EsqlSession class. Furthermore, JMovE took 30 minutes to
report any results as it needed to analyze the entire sub-project and create program dependencies.
This illustrates another major shortcoming of previous tools like JMoVE as developers would run
out of patience when executing tools on medium to large size projects like Elasticsearch, which has
800K LOC.

We then explore the potential of Large Language Models (LLMs) to recommend MOVEMETHOD
refactoring. We used GPT-4o, a state-of-the-art LLM developed by OpenAl [7], and prompted
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it with the content of the EsqlSession class, asking: “Identify the method that should move out of
the EsqlSession class and where to move it.” Our experiment highlighted both the strengths and
limitations of LLMs for this task. In order of priority, the LLM identified 5 methods for relocation (see
@), including execute, parse, optimizedPlan, and analysePlan, all of which rightly belong in Esglsession
and were never moved by the developers. However, the LLM did successfully identify resolvePolicy
as a candidate for refactoring, showing its ability to detect semantically misplaced methods. Despite
this success, the LLM recommended other methods before resolvePolicy, meaning that a developer
would need to filter out several irrelevant suggestions before arriving at the correct one.

After identifying that the method resolvePolicy is misplaced, a tool must find a suitable target
class to move the method into. While the LLM was able to recommend the correct target class, it
also responded with (i) two target classes (i.e., Resolution, ActionListener), which are plausible target
classes, but are not the best semantically fit for the method; (ii) two hallucinations, i.e., classes that
do not exist (i.e., PolicyResolutionService, PolicyUtils as the LLM lacks project-wide context.

A naive approach to address the LLM’s lack of project-wide understanding is to prompt it with
the entire codebase. However, this is currently impractical due to the LLM’s context size limitations
and inability to efficiently handle long contexts [33]. Even state-of-the-art LLMs can’t process large
projects like Elasticsearch in a single prompt without truncating crucial information. Moreover,
as context capacities expand, processing an entire project at once remains challenging due to
increased computational complexity, memory demands, and reduced reasoning effectiveness [33].
Additionally, the cost of processing such large inputs with commercial LLM APIs is prohibitive.

These experiments reveal both the strengths and limitations of LLMs for MOVEMETHOD refactor-
ing. On the positive side, LLMs show proficiency in generating multiple suggestions and demonstrate
an ability to identify methods that are semantically misplaced. However, they also exhibit signifi-
cant limitations, including difficulty in suggesting appropriate target classes, and a high rate of
irrelevant or infeasible suggestions. These limitations underscore the need for caution when relying
on LLM-generated refactoring recommendations. Developers attempting to leverage LLMs for
refactoring would face a laborious and error-prone process. They would need to manually collect
and re-analyze the suggested methods, verify the suitability of each method for relocation, prompt
the LLM again for target class suggestions for suitable methods, and meticulously identify and
filter out hallucinations such as non-existent classes and methods that are impossible to move. In
the example ( Figure 1), a developer would need to sift through 5 candidate methods and, for each
method, understand if any of the 5 or more proposed target classes are adequate. The developers
would analyze 20 or more (method, targetClass) pairs before finding one they agree with.

The above example motivates our approach, MM-AssisT, which significantly streamlines the
refactoring process by (1) utilizing semantic relevance to collect a list of target methods that are the
least compatible with the host class, (2) employing static analysis to validate and filter suggestions,
and (3) leveraging LLMs to prioritize only valid recommendations. For the example above, MM-
AssIsT was able to recommend moving resolvePolicy to the PolicyResolver class as the top candidate.
Our tool, MM-AssIsT, liberates the developers so they can focus on the creative part. Rather than
sifting through numerous invalid, non-existent, or impractical suggestions, developers use their
expertise to examine a small number of high-quality suggestions.

3 APPROACH

In this section we present the workflow that our novel approach and tool, MM-AssIsT, uses to
automatically recommend and perform correctly the MOvEMETHOD refactoring.

Figure 2 shows the architecture and the steps performed by MM-AssisT. First, MM-AssIsT applies
a set of pre-conditions that filter out the methods that cannot be safely moved, such as constructors
() in Figure 2). It then leverages vector embeddings from Language Models to identify methods
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Fig. 2. Architecture of MM-AssisT.

that are the least cohesive with their host class ((2) in Figure 2). In Figure 1, by comparing the
embedding of resolvePolicy against the embedding of EsqlSession using cosine similarity, MM-
AssisT detects that this method might be misplaced (§ 3.2). It identifies other methods in EsqlSession
that might be misplaced based on their low semantic relevance with the host class. Then, it passes
the remaining candidates to the LLM (i.e., the method signature and the class body), which analyzes
their implementation, dependencies, and relationships with the host class to prioritize the most
promising MOVEMETHOD recommendations ((3) in Figure 2).

Once MM-AssisT identifies candidate methods, it systematically evaluates potential target classes
from the project codebase, considering method accessibility and static/non-static constraints (§ 3.3).
For the resolvePolicy method, which utilizes the enrichPolicyResolver field (@ in Figure 1), MM-
AssisT initially identifies several candidate classes, including EnrichPolicyResolver and PolicyManager.

To narrow down these candidates, MM-AssisT calculates relevance scores between the can-
didate method and each potential target class. For resolvePolicy, these scores incorporate mul-
tiple factors: semantic coherence with EnrichPolicyResolver, structural relationships through the
enrichPolicyResolver field reference, parameter compatibility (policyNames, resolution), and the over-
all functional context. MM-AssisT subsequently ranks candidate classes based on these computed
scores to identify the most viable targets ((4) in Figure 2).

Using the Retrieval Augmented Generation (RAG) mechanism, we enhance the LLM’s input with
a prioritized list of target classes and their similarity metrics ((5) in Figure 2). The LLM processes
this enriched context to identify the optimal target class, factoring in code structure, dependencies,
and semantic relevance. In this case, it correctly selects EnrichPolicyResolver as the appropriate
destination for resolvePolicy, aligning with the developers’ actual refactoring decision (see (3) in
Figure 1). This combination of semantic relevance and LLM-based reasoning allows MM-AsSIST
to produce actionable refactoring suggestions ((6) in Figure 2). Finally, MM-AssisT leverages the
IDE’s refactoring APIs to safely execute the recommended transformation automatically. Next, we
discuss each of these steps and concepts in detail.

3.1 Important Concepts

Definition 3.1. (MovEMETHOD Refactoring) A MoveEMETHOD refactoring moves a method from a
host class (where it currently resides but it doesn’t belong) to a target class. We define a MOVEMETHOD
refactoring "w" as a triplet (m H,T), which represents moving a method m from host class H to target
class 7. We denote a single MOVvEMETHOD refactoring with the symbol v, and a set of MOVEMETHOD
refactorings with the symbol Q. Further, for a given MOVEMETHOD refactoring w, we use the notation
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Wm to denote the method to move (m), wy to denote the host class (H) and w7 to denote the target class
(T) of the move.

Definition 3.2. (MovEMETHOD Recommendations) We consider a list of MOVEMETHOD refactoring
candidates/suggestions, ordered by priority (most important at the beginning) to be MOVEMETHOD
Recommendations made by a tool, and denote this with the symbol *R.

We define R to be on ordered list of MOVEMETHOD suggestions.

This allow us to describe the top-N recommendations made by a system as the first N elements in R.

Definition 3.3. (Valid Refactoring Suggestion) We define valid refactoring suggestions as those
that do not break the code. They are mechanically feasible: syntactically correct and successfully
pass the pre-conditions as checked by the IDE. We differentiate between the validity of moving an
instance and a static methods as follows:

(1) An Instance Method can be moved to a type in the host class’ fields, or a type among the
method’s parameters. Several pre-condition checks are necessary to ensure the validity of
the MOovEMETHOD suggestion, including:

e Method Movability - Is the method a part of the class hierarchy?
o Access to references - Does the moved method loses access to the references it needs to
perform its computation?

(2) A Static Method can be moved to almost any class in the project. A valid static-method
move is one where the method can still access its references (e.g., fields, methods calls) from
the new location.

We term any MOVEMETHOD suggestion which is not valid to be an invalid suggestion.

Definition 3.4. (Invalid MovEMETHOD Recommendations) LLMs can generate many invalid
MoveEMETHOD refactorings that, if executed, would break a software system and produce compile
errors. We classify these errors as hallucinations and categorize them as follows:

(1) Target class do not exist (H1): Formally, if C is the set of classes in a software system, then
for a given MOVEMETHOD suggestion w, if wt ¢ C, we call it a hallucination.

(2) Mechanically infeasible to move (H2): The target class exists, but a refactoring suggestion
is invalid according to definitions in the previous subsection 3.3.

(3) Invalid Methods (H3): Methods that are parts of the software-design, and moving them
requires multiple other refactoring changes to accommodate the move. For example, moving
getters and setters would also need to be accompanied by moving the appropriate field.

3.2 Identifying Which Method To Move

We utilize LLMs for MOVEMETHOD refactoring, hypothesizing that their extensive pre-training
on vast code repositories and inherent understanding of code naturalness make them well-suited
for identifying out-of-place methods. However, directly using LLMs to identify potential meth-
ods that may be misplaced within a class is risky, as it results in many invalid MovEMETHOD
recommendations, starting with method-identification, to finding a valid target class.

Filter Invalid Candidates via Sanity Checks. Following established refactoring practices [9,
29, 47], we implement an initial filtering step to identify valid move method candidates. This sanity
check eliminates methods that are likely already in the correct class. First, MM-AssisT filters out
getter and setter methods, as they cannot be moved without also relocating the associated fields.
Next, it excludes methods involved in inheritance chains that can be overridden in child classes,
since moving these would require additional structural changes. It also removes test methods and
those with irrelevant content, such as empty bodies or methods consisting solely of comments.
This initial filtering ensures that only viable candidates proceed to the next stages.
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Identify Least Compatible Methods via Embedding-Based Analysis. To further refine
candidate methods, we use an embedding-based analysis. An embedding is a vector representation
that captures the semantic features of an entity (methods and classes) based on their content and
relationships. We leverage VoyageAl embeddings [53], specifically trained on code, as they more
effectively capture the semantic relevance of programming constructs. We use VoyageAlI [53] due to
its state-of-the-art performance in code-related tasks. Vectors are generated for two inputs: one for
the method body and another for the host class, excluding the method body. Excluding the method
ensures that the class embedding remains unbiased by the method itself. We then calculate the
cosine similarity between these vectors to assess how well each method semantically aligns with its
host class. Based on our analysis of the method distribution across classes in our oracle dataset, we
observed a heavy-tailed distribution where 90% of classes contained fewer than 15 methods. Thus,
we select either all methods in the class or the 15 least cohesive methods (based on cosine similarity
scores), whichever is smaller. This systematic narrowing of the search space ensures only the most
promising candidates advance, laying the groundwork for effective LLM-based prioritization.

Prioritize Methods with LLM Guidance. We leverage LLMs to determine if the tokens of
a method and its body integrate cohesively with the rest of the class. Drawing inspiration from
the success of Chain-of-Thought (CoT) reasoning in software engineering tasks [26, 38], we adopt
a CoT approach, prompting the LLM to perform structured analyses: evaluate each method’s
purpose, cohesion, and dependencies, summarize the host class’s responsibilities, and assess overall
alignment. This step enables the LLM to gain a holistic understanding of the codebase before
recommending methods for relocation. Our prompt is available in our replication package [42].

3.3 Recommending Suitable Target Classes

After identifying potential methods for relocation, the subsequent task is to determine the most
appropriate target classes for these methods. However, this presents a substantial challenge, re-
quiring a comprehensive analysis of the entire codebase. LLMs struggle with such tasks due to
their limited context windows. To address this, we employ Retrieval Augmented Generation (RAG).
RAG is a systematic approach designed to retrieve and refine relevant contextual information,
thereby augmenting the input to the LLM. In our methodology, the task is to efficiently retrieve and
augment the model with the most relevant target classes, informed by a combination of structural
filtering and semantic comparison. Structural filtering refers to evaluating characteristics such as
package proximity and utility class identification, while semantic comparison involves assessing
the meaning and relationships of code elements to determine the most suitable target classes. Since
we designed the retrieval process to enhance refactoring, we refer to this as “refactoring-aware
RAG” We explain the details of the RAG process in the sections below.

Validating Target Classes via Sanity Checks. Once target classes are collected, sanity checks
filter out unsuitable candidates (i.e., interfaces and duplicate signatures) to ensure mechanical
feasibility to perform MovEMETHOD, following established refactoring practices [9, 29].

Target Class Retrieval. The target class retrieval process gathers relevant context about a
candidate method and its host class. It then identifies other potential classes within the project
for method relocation. This involves evaluating the proximity of each class to the host class in
the package structure, and deciding if a class is a utility class, given that utility classes are often
the most suitable targets for method relocations due to their general-purpose nature. Let m be the
candidate method for relocation, H be the host class of m, C be the set of all classes in the project,
and p. C C be the set of potential target classes. We formalize the retrieval and ranking as follows:

pe = Retrieve(h, C) (1)

where Retrieve is a function that selects potential target classes from the whole project.
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Then, for each class . € p., we compute a ranking score R(c, m) that considers both the structural
proximity and utility nature of the class:

R(tc,m) = w, - proximity (., H) + w, - isUtility (¢.) (2)

where:

® W, is the weight assigned to package proximity (i.e., w, = 2)

e w, is the weight assigned to utility classes (i.e., w, = 1)

e proximity(., H) evaluates the package proximity between class t, and the host class of method
m

e isUtility(t.) is a boolean function that returns 1 if ¢, is a utility class, and 0 otherwise

The resulting R(t., m) captures the weighted relevance of each potential target class, considering
both structural and functional aspects of the codebase.

Semantic Relevance-Based Target Class Ranking. While static analysis offers a foundational
understanding of valid refactoring opportunities, it often yields an overly broad set of potential
target classes, as it lacks the ability to capture deeper semantic relationships and contextual nuances.
As a result, static analysis alone cannot effectively prioritize or eliminate classes that are only
superficially related to the candidate method. To refine this selection, we incorporate semantic
relevance analysis, which evaluates both the content and intent of the candidate method and target
classes, aiming to identify deeper semantic connections that static analysis may overlook.

Our semantic relevance analysis involves two key steps. First, MM-AssIsT extracts the method
body out of the host class. Second, we utilize VoyageAI's embedding technique to compute the
cosine similarity between the method body and potential target classes. This helps us to effectively
capture semantic relationships between the method and target classes. Formally, the semantic
relevance between a method and a class is computed as follows:

rel(m, t.) = cosine(embed(m), embed(t.)) (3)

where embed represents the VoyageAl embedding function. We sort the target classes by their rel
scores in descending order and select the top-k candidates (k = 10 based on empirical analysis).

Ranking Target Classes Using LLM. While embeddings capture semantic relevance, they
primarily provide vector-based distance metrics. Adding LLM-based analysis enables us to leverage
textual features like method names and fields that suggest design intent. In the final phase, MM-
AssisT augments the LLM’s input with this enriched context. To avoid context overflow, we create
a concise representation of each target class, including its name, field declarations, and method
signatures. The LLM then takes as input the method to be moved along with these summarized
target class representations, returning a prioritized list of target classes.

We can formalize this LLM-based ranking process as follows:

Rupg(m) = LLM (m, pf) 4)

where:

e Ripm(m) is the final ranked list of target classes for method m

e LLM represents the language model’s decision-making function
e mis the candidate method for relocation

e pk is the set of top k potential target classes ranked by rel(m, )

After the LLM-based ranking process, MM-AssIST presents the recommended method-class
pairs to developers through an interactive interface, accompanied by a rationale explaining each
suggestion. Upon developer selection of a specific recommendation, MM-AssIST encapsulates the
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approved method-target class pair into a refactoring command object. MM-AssisT then executes
the command automatically through the IDE’s refactoring APIs, ensuring safe code transformation.

4 EMPIRICAL EVALUATION

To evaluate the effectiveness and usefulness of MM-AssisT, we designed a comprehensive, multi-
method evaluation to corroborate, complement, and expand research findings. This includes a
formative study, comparative study, replication of real-world refactorings, repository mining,
user/case studies, and questionnaire surveys. These methods, combining qualitative and quantitative
data, work together to address four research questions.

RQ1. How effective are LLMs at suggesting MOVvEMETHOD refactoring opportunities?
This question assesses vanilla LLMs’ ability to identify and suggest refactoring opportunities. We
conduct a formative study to understand the strengths and limitations of using LLMs directly for
refactoring, examining the diversity, feasibility, and correctness of their suggestions.

RQ2. How effective is our approach, MM-ASssIST, at suggesting MOVEMETHOD refactoring
opportunities? We evaluate the performance of MM-AssIST against the state-of-the-art tools,
FETRUTH (representative for DL approaches) and JMoVE (representative for static analysis ap-
proaches). We use both a synthetic corpus used previously by other researchers and a new dataset
of real refactorings performed by open-source developers.

RQ3. What is MM-Ass1isT’s runtime performance? This helps us understand MM-ASsIST’s
scalability and suitability for integration into developers’ workflows. We assess its computational
efficiency, measuring its runtime performance across various project sizes and complexity levels.
RQ4. How useful is our approach for developers? We focus on the utility of MM-Assist from
a developer’s perspective. We conduct a user study with 30 participants with industry experience
who used MM-Assi1ST on their authored code for one week. We analyze their ratings of the quality
of recommendations, MM-AssIsT’s usability, and its potential impact on refactoring practices.

4.1 Subject Systems

To evaluate LLMs’ capability when suggesting MOvEMETHOD refactoring opportunities, we em-
ployed two distinct datasets: a synthetic corpus widely used by previous researchers [9, 11, 25, 47]
and a new corpus that contains real-world refactorings that open-source developers performed.
Each corpus comes along with a “gold set” G of MovEMETHOD refactorings that a recommendation
tool must attempt to match. We define G as a set of MOvEMETHOD refactorings (see Definition 3.1)
- each containing a triplet of method-to-move, host class, and target class (m,H, T).

Synthetic corpus. The synthetic corpus [47] was created by Terra et al. moving different methods
m out of their original class ¢ to a random destination class ¢’. The researchers then created the
gold set as tuples (m, C’, C), i.e., methods m that a tool should now move from ¢’ back to its original
class c. The researchers explained this ensures that method m is out of place in ¢’ and can be moved
back to original class c. This synthetic dataset moves only instance methods; it does not move
static methods. This corpus consists of 10 open-source projects (i.e., Ant, Derby, DrJava, JfreeChart,
JGroups, JTopen, JUnit, MvnForum, Lucene, Tapestry). On average, one project has 1,574 classes
and 13,759 methods, with 207,163 LOC (the versions we used are on Replication Package [42]).

Real-world corpus. To complement the synthetic dataset and provide insights into how closely
LLMs resemble the rationale of expert developers in real-world situations, we curated a corpus of
actual MOvEMETHOD refactorings that open-source developers performed on their projects. We
construct this oracle using RefactoringMiner [51], the state-of-the-art tool for detecting refactorings.

We took extra precautions to prevent LLM data contamination, ensuring that the LLMs used by
MM-AssisT had no prior exposure to the data we tested and could not rely on previously memorized
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results. With GPT-4’s knowledge cutoff in October 2023, we focused our analysis on repository
commiits from January 2024 onward. Our initial dataset comprised the 25 most actively maintained
Java repositories on GitHub, ranked by commit frequency and with over 1,000 stars.

For each commit where RefactoringMiner detected a MOVEMETHOD refactoring, it reports the
source and target classes, the original method’s signature, and the moved method’s signature.
Many of these reported MOVEMETHOD refactorings are false positives, often resulting from residual
effects of other refactorings such as MoveCrass (where an entire class is relocated to another
package) or ExTRACT CLass (where a class is split into two, creating a new class along with the
original). To filter out these false positives, we employed several techniques: first, we verified that
both the source and target classes existed in both versions of the code (i.e., at the commit head and
its previous head). For instance methods, we then checked if the method was moved to a field in
the source class, to a parameter type, or if the moved method’s parameters contained a reference to
the source class (all preconditions for a valid MOVEMETHOD). Starting from the instances detected
by RefactoringMiner, we curated a dataset of 210 verified MovEMETHOD, with 102 static methods
and 108 instance methods — on 12 projects (i.e., Elasticsearch, Spring-framework, Selenium, Ghidra,
Vue-pro, Halo, Kafka, Graal, Redisson, selenium, Apache Flink, Spring-boot). On average, each
project contains 8743 classes and 66306 methods spanning 1032344 LOCs. This oracle enables an
evaluation of MM-AssIsT’s performance on authentic refactorings made by experienced developers.

4.2 Effectiveness of LLMs (RQ1)

Evaluation Metrics. Using these datasets, we evaluated the recommendations made by the vanilla
LLM and identified how many were hallucinations, as defined in Definition 3.4. We categorized
hallucinations into three types: (i) recommendations where the target class does not exist in the
project, (ii) recommendations where moving the method to the target class is mechanically infeasible
due to the lack of a valid reference at the method’s call sites, and (iii) recommendations that fail to
meet the move method preconditions in Section 3.2.

Experimental Setup. We use the vanilla implementation of GPT-4o, a state-of-the-art LLM
from OpenAl [7]. While MM-AssisT is model agnostic (i.e., we can simply swap different models),
we chose GPT-40 because other researchers [14, 41] show that it outperforms other LLMs when
used for refactoring tasks. GPT-4o is also widely adopted in developer productivity tools [12, 21].
Our experimental setup was designed to assess the model’s inherent capabilities in understanding
and recommending MovEMETHOD without additional context or task-specific modifications. We
formulated a prompt where we provided the source code in a given Host class and asked the LLM
which methods are more appropriately placed in other classes and in which classes to move such
methods. The exact prompt is in our companion webpage [42]. We set the temperature parameter
of the LLM to 0 to obtain deterministic results.

For each host class in our Gold sets (both synthetic and real-world), we submitted the corre-
sponding prompt to the LLM and collected its recommendations. We then evaluated them against
the ground truth. Moreover, we conducted a qualitative analysis of the LLM’s explanations and
target class suggestions to gauge the depth of its understanding and possible hallucinations.

Table 1. Different kinds of hallucinations made by the Vanilla LLM

Corpus # Recomms. | # Hall-class (H1) | # Hall-Mech (H2) | # Invalid Method (H3)
Synthetic (235) 723 362 168 51
Real-world (210) | 1293 431 275 320

Results. Table 1 illustrates the distribution of valid suggestions and different types of hallucina-
tions produced by the vanilla LLM for both synthetic and real-world datasets. We observed three
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main types of hallucinations: Non-existent target classes (H1), where the LLM suggested moving
methods to classes that don’t exist; Unfeasible target classes (H2), where the proposed refactorings
would break compilation due to inaccessible target classes; and Incorrect method identification
(H3), where the LLM mistakenly flagged well-placed methods for relocation. Crucially, actuating
any of these hallucinations would lead to broken code, compilation errors, or degraded software design.

In the synthetic dataset, comprising 723 total suggestions, a mere 20% (142) were valid. The
overwhelming 80% (581) were hallucinations, with H1 accounting for 50.1% (362), H2 for 23.2% (168),
and H3 for 7.1% (51) of all suggestions. The real-world dataset also presented significant challenges.
Once again, out of 1293 total suggestions, only 20% were valid. The 80% hallucinations were
distributed as follows: H1 comprised 33% (431), H2 22% (275), and H3 25% (320) of all suggestions.

These findings underscore the impracticality of using vanilla LLM suggestions for MOVEMETHOD
without extensive filtering and validation. For every valid suggestion, a developer would need to sift
through and discard 3-4 invalid ones, many of which could introduce critical errors if implemented.
This not only undermines the potential time-saving benefits of automated refactoring but also
introduces significant risks of introducing bugs or degrading code quality.

LLM:s excel at generating MOVEMETHOD recommendations, yet only 20% of these suggestions
are useful.

4.3 Effectiveness of MM-Assist (RQ2)

To evaluate MM-AssisT’s effectiveness, we conducted a comparative study against the state-of-
the-art MOVEMETHOD recommendation tools. We directly compare with the best-in-class tools:
JMovE [47] for static analysis and FETRUTH [29] for ML/DL approaches, as both have been shown
to outperform all previous tools. We also compare with the Vanilla-LLM (GPT 4o0), which represents
the standard LLM solution (without using MM-AssIsT’s enhancements). We went the extra mile to
ensure a fair comparison: we consulted with the FETRUTH and JMoVE authors to ensure the optimal
tool’s settings, and clarified with the authors when their tools did not produce the expected results.

Evaluation Metrics. For evaluation, we employ recall-based metrics, following an approach
similar to that used in the evaluation of JMove [47], a well-established tool in this domain. For
refactoring recommendation solutions that aim to be used by industry practitioners, recall@k
(where k is a small number so that practitioners do not sift through several candidates) is a more
appropriate metric. Moreover, it is more fair than precision as it is not subjective. Given that a tool
can produce reasonable recommendations, but only the authors of those software systems can
accurately determine whether those recommendations are (un)reasonable, we cannot calculate a
true precision. But we can calculate a true recall as we have a reliable Gold set (G).

We present recall for each phase of suggesting the move-method refactoring: first, identifying
that a method is misplaced (Recallys); second, identifying a target class for the misplaced method
(Recallc); third, identifying the entire chain of refactoring: selecting the right method and the right
target class (Recallyic).

For a recommendation list R = (Q, 7), we define Recallys, Recallc and Recallyc as follows:
%, Recallc = —|Q|'Z):|G|, and Recallyic = —|(Q|2|G)|

, Where Q,, is the subset of Q containing refactorings whose method components match those
in the ground truth set G. Formally, we define it as follows:

Q= {w|lw € QA I(wm, 0, *) € G}

For each recall metric, we calculate Recall@k for the top k recommendations, where k € {1, 2, 3}.

Experimental Setup. Using the gold set, we trigger each tool on a source class for which one
of its methods was moved. We applied each tool to both the synthetic corpus and the real-world

Recally =
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Table 2. Recall rates of MM-AssisT on the synthetic corpus of 235 refactorings [47] that moved instance
methods. Recally; = identify the method, Recallc = identify the target class for a given method, Recallp;c=
identify the method&target class pair

Approach Recally Recallc Recallyc
@ | @ | @3 | @ | @ | @3 | @ | @2 | @3
JMovE 41.3% | 43.0% | 43.4% | 97.1% | 97.1% | 97.1% | 40.0% | 41.7% | 42.1%
FETRUTH 2.1% 2.9% 3.4% 100% | 100% | 100% | 2.1% 2.9% 3.4%

Vanilla-LLM | 73.1% | 77.3% | 80.8% | 72.8% | 72.8% | 72.8% | 55.6% | 58.2% | 60.2%
MM-AssisT | 75.7% | 81.2% | 82.9% | 96.5% | 99.5% | 99.5% | 73.2% | 78.7% | 80.4%

dataset, recording the suggestions generated for each input. Considering the number of entries
in the datasets, given that JMOVE can take a long time to run (12+ hours on a large project), we
cutoff its execution after 1 hour. The tools generate a ranked list of possible target classes (T)
for each candidate method (m). We then compared these suggestions against the ground truth to
calculate recall for each tool using the evaluation metrics presented earlier. We computed Recallys,
Recallc, and Recallyc based on each tool’s recommendations. If a tool correctly identifies the target
method as a candidate for a move (no matter the recommended target class ), we count it in Recally,.
Starting from correctly identified target methods, we calculated the number of cases where a tool
found the correct target class, thus computing Recallc. Finally, we counted cases where the exact
MovEMETHOD refactoring was recommended, thus computing Recallyc.

Results. Table 2 shows the effectiveness of MM-AssisT and baseline tools on the synthetic
dataset. As shown, MM-AssisT demonstrates superior performance across many of the recall
metrics. Most importantly, it shows an increase of 17-71% compared to all baselines in Recallyc@1,
which is the most comprehensive measure as it captures both the correct identification of misplaced
methods and the accurate suggestion of target classes. While JMoVE exhibits high accuracy in target
class identification (Recallc@1 = 97.1%), it shows limitations in method identification. Interestingly,
FETRUTH achieves perfect Recallc but extremely low Recallys (2% — 3%) despite being very prolific
in recommending as many as 67 methods to be moved from a class (see Replication Package [42]).
When it does correctly identify a method, it accurately suggests the target class. However, this
high Recallc is less meaningful, thus resulting in a low overall Recallyc due to the low number of
correctly identified misplaced methods. We confirmed this paradox with FETRUTH authors.

The Vanilla-LLM shows promise in method identification but fails to suggest the target class
accurately. In contrast to all previous tools, MM-AssIsT’s consistent high performance across
all metrics, especially in (Recallyc@3 = 80.4%), highlights the effectiveness of our approach in
combining LLM capabilities with static analysis and semantic relevance.

With the 2024 real-world dataset of refactorings performed by open-source developers, we found
a wider difference in performance based on changing two variables. First, we distinguish between
cases when the MOVEMETHOD target was an instance or static method - thus we shed light on the
effectiveness of MM-AssisT when using different mechanisms to suggest a target class. Second,
we distinguish between small and large classes based on their method count. Our analysis using
the real-world oracle reveals a heavy-tail distribution, where we label classes with fewer than 15
methods (90th percentile across all projects) as Small Classes and the rest as Large Classes.

Tables 3 and 4 summarize our results for instance and static method moves, respectively. Since
JMovVE could not finish running on the entire dataset, we note the number of completed entries in
parenthesis. For instance methods, MM-AssisT achieved 8%-80% higher recall compared to baseline
tools when handling smaller classes. However, we also observed a performance decrease in all
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Table 3. Recall rates on 108 instance methods moved by OSS developers in 2024. First column shows the
number of small or large classes in the oracle. Recally; = identify the method, Recallc = identify the target
class for a previously identified method to be moved, Recallysc= identify the method&target class pair.

Recally Recall- Recallyc

Oracle Size Approach @ | @ | @3 | @ | @ | @3 | @l | @2 | @3

JMove (19) 5% |5% |5% |0% |0% |0% |0% |0% | 0%

SmallClasses (38) | FETRUTH 20% | 20% | 20% | 100% | 100% | 100% | 20% | 20% | 20%

Vanilla-LLM | 55% | 68 73% | 86% 86% 86% 63% | 58% | 63%

MM-ASSIST | 76% | 92% | 94% | 86% 89% 89% 71% | 82% | 82%

JMoVE (24) 8% | 8% | 8% 100% | 100% | 100% | 8% | 8% | 8%

LargeClasses (70) | FETRUTH 2% | 8% | 12% | 76% | 76% | 76% |2% | 6% | 9%

Vanilla-LLM | 7% 12% | 14% | 76% 76% 76% 10% | 7% 10%

MM-AssisT | 37% | 41% | 51% | 75% 79% 79% 32% | 35% | 40%

Table 4. Recall rates on 102 static methods moved by OSS developers in 2024. Recallys = identify the method,
Recallc = identify the target class for a given method, Recallyjc= identify the method&target class pair.

. Recally Recalle Recallyc
Oracle Size Approach @1l @2 | @ ol @2 @ @l @2 | @3
FETRUTH 7% 15% | 15% | 14% | 14% | 14% | 1% 2% 2%

SmallClasses (40) | Vanilla-LLM | 43% | 57% | 65% | 7% | 7% | 7% |3% | 4% |5%
MM-AssSIST | 55% | 65% | 70% | 21% | 21% | 21% | 12% | 14% | 15%
FETRUTH 6% | 11% | 15% | 6% | 6% | 6% | 0.4% | 0.6% | 0.8%

LargeClasses (62) | Vanilla-LLM | 14% | 25% | 34% | 9% | 9% | 9% | 1.3% | 2.2% | 3.0%
MM-AssisT | 14% | 27% | 29% | 44% | 44% | 44% | 6% 12% | 13%

tools when identifying MOVEMETHOD opportunities in large classes. This is because it is more
likely for large classes to suffer from significant technical debt, and there are many candidate
methods that can be moved out of it — thus it is harder to pick the proverbial “needle from the
haystack”. Since we are not the developers of these classes, we are not the best to judge the merit
of each recommendation, thus we rely on whether the tool matched exactly what the open-source
developers refactored. While recalling instance MOVEMETHOD, we noticed that our performance on
small classes was comparable to the synthetic dataset, while for other tools dropped significantly.
Notably, our Recallc@3 was 89%, which can be attributed to the performance of the LLM in picking
the suitable target classes.

However, the differences are more nuanced when we evaluate MM-ASsSIST on static methods:
we find that our Recallc drops significantly. This is because the scope of moving static methods is
massive - they can be moved to (almost) any class in the project. For large projects like Elasticsearch,
this means picking the right target class among 21615 candidates. The real-world oracle contains
on average 8743 classes per project. This shows that recommending which static methods to
move is a much harder problem than recommending instance methods, as analyzing thousands
of classes to find the right one is hard. This could explain why prior MovEMETHOD tools do not
give recommendations for moving static methods. As we are the first ones to make strides in this
harder problem, we hope that by contributing this dataset of static MOVEMETHOD to the research
community, we stimulate growth in this area.
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4.4 Runtime performance of MM-Assist (RQ3)

Experimental Setup. We used both the synthetic and real-world corpus employed in our earlier
experiments to measure the total execution time. The execution time is an interval between the
tool’s triggering on a source class and the display of final refactoring suggestions to the user. To
understand what components of MM-Ass1sT take the most time, we also measured the amount of
time it took to generate responses from the LLM, and the time it took to process suggestions. To
ensure real-world applicability, we conducted these measurements using the MM-Ass1sT plugin for
Intelli] IDEA, mirroring the actual usage scenario for developers. This approach allows us to account
for any overhead introduced by the IDE integration, providing a more accurate representation of
the tool’s performance in practical settings. We conducted all experiments on a commodity laptop,
an M1 MacBook Air with 16GB of RAM.

Results. Our empirical evaluation demonstrates that MM-AssIsT achieves an average runtime
of 27.5 seconds for generating suggestions. The primary computational overhead stems from the
LLM API interactions consuming approximately 9 seconds. In our experience with JMoVE, on the
larger projects in our real-world dataset, JMovE takes several hours (up to 24 hours) to complete
running - thus we imposed the 1-hour cutoff time. Out of the box, FETRUTH is also slow and can
take 12+ hours to run on large project. With the help of FETRUTH authors, we were able to run it
on a single class at a time — this takes an average of 6 minutes per class. Thus, compared with the
baseline approaches, MM-AssIsT is two orders of magnitude and one order of magnitude faster
than JMovEe and FETRUTH, respectively.

4.5 Usefulness of MM-Assist (RQ4)

We designed a user study to assess the practical utility of MM-AssisT from a developer’s perspective.

Dataset. We made the deliberate choice to have participants use projects with which they
were familiar. This decision was grounded in several key considerations. First, by working with
familiar codebases, developers can leverage their deep understanding of the project’s architecture,
design decisions, and evolution history. This familiarity enables them to make more informed
judgments about the appropriateness and potential impact of the suggested refactorings. Second,
using personal projects enhances the validity of our study, as it closely mimics real-world scenarios
where developers refactor code they have either authored or maintained extensively. Third, this
approach allows us to capture a diverse range of project types, sizes, and domains, potentially
uncovering insights that might be missed in a more constrained, standardized dataset.

Experimental Setup. 30 students (25 Master’s and 5 Ph.D. students) volunteered to participate
in our study. Based on demographic information provided by the participants, 73% have industrial
experience. All participants, with the exception of two, have experience with the Java programming
language. Finally, the majority of participants (24 out of 30) have prior experience with refactoring.

We instructed the participants to use MM-AssIsT for a week and run it on at least ten different
Java classes from projects they work on. The selection of these classes was left to the discretion of the
participants, with the guidance to choose files they had either authored or were very familiar with.
For each class they selected, MM-AssisT provided up to three MOVEMETHOD recommendations.
We chose to present three recommendations to strike a balance between variety and practicality.
Afterward, they sent us the fine-grained telemetry data from the plugin usage. For confidentiality
reasons, we anonymize the data by stripping away any sensitive information about their code,
e.g., the names and source code of classes or methods that MM-AssisT presented to them. We
collected usage statistics from each invocation of the plugin on each class. In particular, we collected
this information: how the users rated each individual recommendation and whether they finally
changed their code based on the recommendation.
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Participants rated each recommendation on a 6-point Likert scaled ranging from (1) Very unhelp-
ful to (6) Very helpful. We chose this 6-point Likert scale to force a non-neutral stance, encouraging
participants to lean towards either a positive or negative assessment of each recommendation. We
asked the participants to rate the MM-AssIsT’s recommendations while they were fresh in their
minds, right after they analyzed each recommendation.

After participants sent their usage telemetry, we asked them to fill out an anonymous survey
asking about their experience using MM-AssisT. We asks participants to compare MM-ASSIST’s
workflow against the IDE, and asked for open-ended feedback about their experience.

Results. 30 participants applied MM-AssIsT on 350 classes. We found that, in 290 classes (out of
350 classes) the participant positively rated one of the recommendations (82.8% of the time). Addi-
tionally, we found that the users accepted and applied a total of 216 refactoring recommendations
on their code, i.e., 7 refactorings per user, on average. This shows that MM-AssisT is effective at
generating useful recommendations that developers, who are familiar with their code, accept.

The participants also provided feedback in free-form text. Of the 30 participants, 80% of them
rated the plugin’s experience highly, when comparing against the workflow in the IDE. In praise of
MM-AssIsT, the participants said that MM-AssIsT gave them a sense of control, allowing them to
apply refactorings that they agreed with. Others noted that plugin’s presentation of suggestions was
good. The participants also provided feedback about ways to improve MM-AssisT’s UI experience,
for example some said that the rationale that LLM gave for the recommendations could be improved.

5 DISCUSSION

Internal Validity: Dataset bias poses a potential threat to the effectiveness of MM-AssisT. To
mitigate this, we employ both a synthetic dataset (widely used by others), offering a controlled en-
vironment, and a real-world dataset comprising refactorings performed by open-source developers.

External Validity: This concerns the generalizability of our results. Because we rely on a spe-
cific LLM, it may impact the broader applicability of our findings. We anticipate that advancements
in LLM technology will improve overall performance, though this needs to be verified empiri-
cally. Second, MM-AssisT currently focuses on Java code. Although our approach is conceptually
language-agnostic, with prompts not tied to Java-specific constructs, we cannot definitively claim
generalizability to other programming languages without further investigation. Future work will
explore the effectiveness of MM-AssIST across diverse programming languages.

Tool implementation. MM-AssIST’s architecture supports extensibility across programming
languages and development environments through three fundamental design decisions. First, our
core refactoring logic separates language-specific concerns from the refactoring workflow. While
the current implementation uses IntelliJ’s refactoring framework for Java, future versions could
integrate with the Language Server Protocol (LSP) [2]. LSP is a standardized protocol that enables
development tools to provide consistent programming language support across different editors
and IDEs. Second, we designed a modular pipeline where components communicate through
well-defined interfaces. The LLM service, embedding model, and IDE integration are independent
modules that can be replaced without affecting the rest of the system. For instance, developers
can swap different embedding models while retaining the same similarity computation logic or
integrate different IDEs through their native plugin APIs. While our evaluation shows that general-
purpose LLMs like GPT-40, which also perform well at code understanding [1], our modular
architecture allows easy integration of code-specific LLMs (e.g., StarCoder [27], CodeLlama [43])
through the same interface. This opens interesting research directions to evaluate whether models
specifically trained on code repositories could offer better refactoring suggestions. To address
the non-deterministic nature of LLMs, we set the temperature parameter to 0 in all LLM calls,
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which makes the model’s output deterministic for identical inputs. For IDE developers, MM-AsSIST
demonstrates how to safely integrate Al-powered suggestions with existing IDE infrastructure.

6 RELATED WORK

We organize the related work into two parts: (i) the literature on MOVEMETHOD refactoring, and
(ii) the research that use LLMs for software refactoring.

Move method refactoring. The refactoring process, as found in the survey conducted by Mens
and Tourwe [34], is a pipeline of steps that encompasses identifying areas for refactoring, selecting
the appropriate refactoring type, ensuring existing software behavior is preserved, implementing
changes, evaluating their impact on quality and process metrics, and maintaining consistency with
related documentation and artifacts. JMove [47] and JDeodorant [48] detect methods located in
incorrect classes and suggest moving them to more appropriate classes based on software metrics
derived from static analysis. HMove [9], a recently introduced tool, leverages a graph representation
of code entities and LLMs, relying on several user-configured thresholds to detect and recommend
move method refactorings. Additionally, Sales et al. [44] recommends move method refactorings
based on the set of static dependencies established by a particular method, while Bavota et al. [5]
uses relational topic models to identify methods to move. Liu et al. [31] further expands on move
method refactoring by identifying other methods that should be moved once a method is relocated
by a developer. In contrast to our approach, a major difference with these tools is that they require
users to define thresholds, which can be challenging for inexperienced users. On the other hand,
RMove [11] utilizes both structural and semantic representations from code snippets and employs
machine learning models to recommend move method refactoring opportunities.

Most of these techniques recommend or partially automate refactoring activities but do not
fully automate the whole refactoring pipeline [34], unlike our approach. Moreover, MM-AsSIST
attacks the problem drastically differently. Previous tools compute whole project dependencies
(which is computationally expensive and doesn’t scale) and then produce a confidence score for
each method in the project. Thus, they treat this as a classification instead of a recommendation
problem: they produce dozens of possible prospects to move out a given class (many of which are
unuseful), which burdens the programmer. In contrast, MM-AssIST provides up to 3 reasonable
recommendations per class, and most of them align with how expert developers refactor the code.

Refactoring in the age of LLMs. A recent systematic study [22] analyzing 395 research papers
demonstrates that LLMs are being employed to solve various software engineering tasks. While code
generation has been the predominant application, recently LLMs like ChatGPT have been applied to
automate code refactoring [3, 9, 13, 46]. Cui et al. [10] leverage intra-class dependency hypergraphs
with LLMs to perform extract class refactoring, while iSMELL [55] uses LLMs to detect code smells
and suggest corresponding refactorings. However, LLMs are prone to hallucinations, which can
introduce incorrect or broken code, posing challenges for automated refactoring systems. Unlike
other approaches, our method addresses this limitation by validating and ranking LLM-generated
outputs, ensuring that developers can safely execute refactoring recommendations.

The prevalence of hallucinations in LLM-based refactoring is widely studied. Pomian et al. [40, 41]
investigated hallucinations in EXTRACTMETHOD refactoring, while Dilhara et al. [14] analyzed
hallucinations in Python code modifications. These studies consistently show that LLMs can
hallucinate during refactoring tasks, substantiating our findings, where LLMs hallucinated in 80%
of the cases when suggesting MovEMETHOD. This highlights the necessity of robust validation
mechanisms, which are integral to our tool, MM-AssisT, ensuring the reliability and safety of
refactoring suggestions generated by LLMs.
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7 CONCLUSIONS

Despite lots of active research in the area of recommending MOVEMETHOD refactorings, the progress
over the years has been incremental and has stifled. The rise of LLMs and their applications to
the field of refactoring has rejuvenated the field. Our approach and tool, MM-AssIsT, significantly
outperforms previous best-in-class tools and provides recommendations that better align with the
practices of expert developers. When replicating a corpus of refactorings performed in 2024 by open
source developers, MM-Ass1sT improves the recall over previous best-in-class tools by 4x, while
running in 10x-100x less time. Moreover, our case study with 30 experienced participants who
used MM-AssIST to refactor their own code for one week shows they rated 82.8% of MM-AssIST
recommendations positively.

The key to unleashing these breakthroughs is combining static and semantic analysis to (i)
eliminate LLM hallucinations and (ii) focus its laser. MM-Ass1sT checks refactoring preconditions
automatically which cuts down the LLM hallucinations. Moreover, by leveraging semantic em-
bedding into a RAG approach, MM-AssisT narrows down the context for the LLM so that it can
focus its laser on a small number of high-quality prospects. This was instrumental in picking the
right candidate from a population of more than 21000 candidate target classes. We hope that these
techniques inspire others with fresh ideas on how to solve many other refactoring recommendation
domains such as splitting large classes or packages.
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