
IDE Native, Foundation Model Based Agents for
Software Refactoring

Abhiram Bellur
University of Colorado, Boulder

Boulder, CO, USA
abhiram.bellur@colorado.edu

Fraol Batole
Tulane University

New Orleans, LA, USA
fbatole@tulane.edu

Abstract—Foundation Models (FMs) have been trained on a
massive amount of coding data and, at their best, are capable
of looking at code like an expert software developer. This has
led researchers to explore the possibility of FM-based agents for
various software engineering tasks. These agents are capable of
planning and executing complex tasks, such as bug repair, in
the manner that an expert developer who is familiar with the
codebase would. However, FMs often produce puzzling responses
that are capable of resulting in buggy or vulnerable code. Inspired
by recent work in agents for software engineering tasks, we
discuss the idea of a FM-based refactoring agent, which is capable
of scanning the entire codebase to suggest changes that improve
the quality of the software system. Additionally, we posit that the
IDEs (equipped with a massive number of static-analysis based
checks), are the ideal place for these agents to live. In this paper,
we discuss the challenges and issues related to building FM-based
refactoring agents that live within the IDE.

I. INTRODUCTION

Foundation Models (FMs) have been shown to be effective
at performing various software engineering tasks such as
bug repair [1], [2] and code-generation [3]–[5]. Recently,
researchers have also applied FMs in the context of software
refactoring [6], [7]. In particular, our work on EM-Assist and
MM-Assist shows that FMs are capable of providing refactor-
ing suggestions like an expert developer who intimately knows
the code; however, FMs hallucinate. More than half of their
suggestions are deeply flawed, as they do not understand the
mechanics of refactoring – they simply suggest tokens that
nicely co-occur together (as seen in their training data). Some
of these suggestions are valuable, but distinguishing them from
the irrelevant ones is essential. Even when they identify a valid
refactoring opportunity, we have found that FMs are incapable
of executing the refactoring change correctly, and break the
code more often than not. To handle these massive shortcom-
ings, we employ capabilities from the integrated development
environment (IDE) to filter out the FM’s hallucinations. Then,
we use the IDE once again to carry out the refactoring based on
the developer’s acceptance. This has proven to be an effective
way to generate useful suggestions for developers.

While these works focus on suggesting a single type of
refactoring, we have observed that developers often perform
different kinds of refactoring changes together in the wild,
motivated by multiple reasons [8]. For example, while adding
a new feature to the software, developers often extract reusable

fragments of code, parametrize variables, or move methods
to appropriate classes. Currently, no single tool is capable of
suggesting this plethora of refactoring changes. Moreover, the
increasing prevalence of AI-generated code, such as Google’s
report that 25% of their recent code is AI-generated [9],
highlights concerns about code quality. Studies show that AI-
generated code often requires refactoring [10], which under-
scores the need for an automated refactoring solution.

To create such a tool, we draw inspiration from recent
advances in FM-based agent approaches [1], [2], [11]. We en-
vision building an autonomous AI agent capable of suggesting
multiple types of refactorings. This agent would be capable
of exploring the code base, executing tools, and generating
a series of refactorings (a refactoring plan) that improves
the code quality while considering the developer’s coding
preferences and the programming language’s best practices.
Furthermore, we envision that this agent be integrated into an
IDE, enabling it to leverage the IDE’s extensive static analysis
APIs (which can be utilized as ‘tools’ by the agent) – including
the ability to correctly carry out refactorings. This integration
ensures that developers can interact with the agent seamlessly
in their familiar environment.

In this position paper, we aim to highlight the need for a
refactoring agent and discuss several challenges in building
such an agent. Section II sheds light on our recent work in
refactoring assistants and motivates the need for an agent.
Section III describes the research challenges in building a
refactoring agent, from designing to evaluating the agent.

II. REFACTORING POWERED BY IDE-INTEGRATED
FM-BASED AGENTS

Our recent work has explored the idea of using Foundation
Models (FMs) for refactoring tasks [6], [12]. In particular, our
work on EM-Assist uses GPT-3.5 to suggest ways to split up
large methods – as chosen by a developer. MM-Assist, sug-
gests moving misplaced methods to appropriate target classes.
Both of these tools rely on FM-based components to suggest
refactoring opportunities, but validate, and further execute
the model’s suggestion by using an IDE – IntelliJ IDEA. In
both cases, we found that FMs had an astonishing effect of
behaving like expert developers and suggested refactorings just
accordingly in many cases.



However, despite this impressive performance, we found
that FMs hallucinate significantly for such refactoring tasks.
Although they are trained on massive amounts of code data,
they lack an understanding of the specific mechanics of the
refactoring change. In the case of the extract method, FMs
suggested extracting code that would require multiple variables
to be returned. Such a refactoring is not possible in languages
like Java. In the case of Move-Method, FMs displayed a lack
of awareness about the visibility level of fields and methods
(private, protected, public) and suggested moves that would
break the code – accessibility to certain fields or methods
would be lost. When asked for Extract-Method opportunities,
75% of FM’s suggestions were hallucinations, leading to code
that would not compile. When asked for Move-Method oppor-
tunities, results were similar – 80% of the FM’s suggestions
are invalid. This makes sense, as the model requires a project-
wide understanding of the code to suggest changes.

Even when they identify a valid refactoring opportunity,
we have found that FMs are incapable of refactoring the
code correctly, resulting in compilation errors, or failing tests.
Often, they break the code by refactoring out-of-scope ele-
ments, introducing new behaviours, getting the syntax wrong,
or failing to call project-specific code correctly.

To filter out these hallucinations, we used the IDE’s static
analysis capabilities to check and execute refactoring actions.
In MM-Assist, we used the IDE’s static analysis in two steps:
first, identify if a method can be moved in the first place,
and second, if the method can be moved to the suggested
target class. Only if both of these criteria pass, we present
the suggestion to the developer. Finally, if the developer likes
MM-Assist’s suggestion, we execute it by triggering the Move-
Method workflow inside the IDE – a flow that developers are
already familiar with.

Prior works have predominantly focused on suggesting a
single type of refactoring at a time. However, in real-world sce-
narios, developers often perform multiple types of refactorings
concurrently [8]. For example, extracting a method so that it
can be reused, extracting a class to add more functionality,
parametrizing a variable, and extracting and subsequently
moving a method to a more appropriate host class. Inspired
by this observed behavior, we believe that a tool capable of
understanding the codebase comprehensively, much like an
expert developer, would be highly valuable. Such a tool should
be able to propose a plethora of refactoring changes while
considering concurrent refactoring changes. To the best of our
knowledge, such a tool does not currently exist. This is where
we believe an FM-based agent can excel. This is because an
agent can learn about various preferences in the developer’s
(and project’s) coding style while also adhering to language-
level best practices. Developer preferences could be inferred
by analyzing the existing codebase (e.g., naming conventions)
or by reviewing which suggestions were previously accepted
or rejected. An agents that understands this ‘vocabulary’, and
thinks like another developer in the project, would produce
suggestions that are very useful.

Based on our experience in previous works, we cannot trust

the FM to execute any changes to the code, as hallucinations
often break the code. This is where we believe that the IDE
plays a crucial role. Exposing the IDE’s static analysis APIs to
the agent as ‘tools’, ensures that changes are executed safely.

III. RESEARCH CHALLENGES

We identify four research challenges to build and evaluate
a FM-based refactoring agent.

A. Aligning with Developers’ Refactoring-Preferences

Developers employ varying criteria for determining when
and how to refactor code. Theoretically, cleaner code does not
necessarily yield practical benefits in every project context.
For example, some developers prefer not to split up long
methods if reuse is not promoted (violating the single respon-
sibility principle). Projects may also have their own naming
conventions, with developers preferring standard names over
more verbose, easier-to-understand names. Projects also have
standards for coding style and structure, which are enforced in
the code review process. These standards may or may not be
explicitly defined in documentation. Then, there are language-
wide best practices most developers would choose to adopt.

For an FM-based refactoring agent to be effective, it must
be capable of adapting to these project-specific standards. This
requires the agent to autonomously learn implicit developer
preferences through analysis of the codebase, enabling the
generation of suggestions that align with established practices
and developer expectations.

B. Agent and Developer Interface

We believe that it is vital to keep the developer in the
loop while suggesting refactoring changes. In order to do
so, the following research questions emerge: How should
refactoring suggestions be presented to the developer? How
often should the agent report back its suggestions to the
developer? Should the agent autonomously execute changes
while allowing the developer to selectively undo modifications,
or should it present a curated list of proposed changes for
review and approval?

Additional complexity arises when considering the fact that
some refactoring changes may be dependent on other changes
being executed – a partial ordering. This idea, which we
term a ’refactoring plan,’ involves executing modifications in
a specific sequence, where some changes enable or validate
others. Conversely, certain actions may invalidate previous
suggestions. Effectively conveying this dynamic relationship
to developers is a significant challenge.

Further, there are also questions about prioritizing different
refactoring suggestions based on their severity and impact.

C. Sandboxing the IDE’s APIs

The reliability of FMs in making direct modifications to
source code remains limited, necessitating safeguards to ensure
correctness. We envision exposing the IDE’s static-analysis
APIs to the agent as tools, making sure changes are executed
safely. However, simply exposing all the APIs as tools would



not work for multiple reasons. There are too many APIs,
many of which have overlapping functionality and some of
which are irrelevant in the refactoring context. Additionally,
exposing all APIs to the agent risks unwanted scenarios,
such as deleting untracked files in the project. Like other
researchers [11], we also believe that sandboxing relevant
APIs is the way to go. This gives tool builders control of
the APIs and exposes simple endpoints to the FMs. Further,
retrieving the most relevant APIs based on the agent’s state
would prevent the FM from calling irrelevant functions. For
example, when an agent identifies duplicate code suitable for
extraction, providing it with tools to perform ‘Extract-Method’
and ‘Parametrize-Variable’ would be appropriate.

D. Evaluating the Agent

Assessing the utility of an FM-based refactoring agent
presents several methodological challenges. We propose two
complementary strategies: (1) comparing the agent’s sugges-
tions against an oracle of refactorings derived from open-
source projects, and (2) submitting patches to open-source
projects to evaluate community acceptance rates. Each of these
approaches has distinct challenges that need to be addressed.

1) Evaluation against an Oracle of refactorings in OSS:
Mining a dataset of refactoring changes from open-source is
possible using a tool such as RefactoringMiner [13]. But,
building this oracle is difficult, as most refactoring changes
are not done in a stand-alone fashion – they come along with
feature additions or bug fixes. Our vision is to build a dataset
by constructing a version of the code on top of the developers’
changes, but modulo refactoring changes. One way to achieve
this is by rolling back refactoring changes on the latest version
of the code.

Additionally, since FMs have been trained on internet-wide
data, including the entirety of GitHub, they may have seen
some of the code in the oracle being transformed as they
were, effectively memorizing them. To deal with this issue,
we envision creating the dataset only from commits made
after the FM’s training cut-off date. Doing so ensures that
our evaluation truly tests the model’s capabilities.

Once this dataset is built, we think that measuring recall
is an appropriate performance metric. Measuring precision is
not worthwhile as there may be other refactoring opportunities
that the developer would indeed perform, but they did not for
several reasons. We envision computing recall in two steps:
first, checking if the refactoring was identified, and second,
verifying if it matches the developer’s implementation.

2) Sending Patches to OSS projects: This is the ideal way
to measure the usefulness of a refactoring system. However,
sending fresh patches to code committed a long time ago may
be futile – as developers are often reluctant to change old code,
which is considered frozen. Additionally, a PR with simple
refactoring changes incurs the entire cost of code review,
which may not be worthwhile for small projects. We think
that participating in the code review process is a great idea, as
this is when developers are most receptive to feedback about
newly added code.

IV. CONCLUSION

Developing an FM-based refactoring agent presents several
challenges, including aligning with developer preferences,
creating effective interaction interfaces, safely sandboxing
APIs, and evaluating agent performance. Addressing these
challenges will enable seamless integration of intelligent refac-
toring tools into development workflows, ultimately enhancing
code quality, maintainability, and developer productivity. We
encourage the software engineering research community to
engage with these challenges and help shape the future of
intelligent refactoring tools, ultimately contributing to more
efficient and maintainable software systems.

REFERENCES

[1] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, “Autocoderover:
Autonomous program improvement,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2024, pp. 1592–1604.

[2] I. Bouzenia, P. Devanbu, and M. Pradel, “Repairagent: An autonomous,
llm-based agent for program repair,” 2025.

[3] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, Nov. 2020, pp. 1536–1547.
[Online]. Available: https://aclanthology.org/2020.findings-emnlp.139

[4] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Online and
Punta Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 8696–8708. [Online]. Available: https:
//aclanthology.org/2021.emnlp-main.685

[5] Github, “Copilot,” https://github.com/features/copilot, accessed: 2024-
10-07.

[6] D. Pomian, A. Bellur, M. Dilhara, Z. Kurbatova, E. Bogomolov,
A. Sokolov, T. Bryksin, and D. Dig, “Em-assist: Safe automated
extractmethod refactoring with llms,” in Companion Proceedings of the
32nd ACM International Conference on the Foundations of Software
Engineering, ser. FSE 2024. New York, NY, USA: Association
for Computing Machinery, 2024, p. 582–586. [Online]. Available:
https://doi.org/10.1145/3663529.3663803

[7] A. Shirafuji, Y. Oda, J. Suzuki, M. Morishita, and Y. Watanobe, “Refac-
toring programs using large language models with few-shot examples,”
in 2023 30th Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 2023, pp. 151–160.

[8] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor?
confessions of github contributors,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 858–870. [Online]. Available:
https://doi.org/10.1145/2950290.2950305

[9] T. Verge, More than a quarter of new code at Google is generated
by AI, Accessed 2024. [Online]. Available: https://www.theverge.com/
2024/10/29/24282757/google-new-code-generated-ai-q3-2024

[10] M. L. Siddiq, L. Roney, J. Zhang, and J. C. D. S. Santos, “Quality
assessment of chatgpt generated code and their use by developers,” in
Proceedings of the 21st International Conference on Mining Software
Repositories, 2024, pp. 152–156.

[11] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao, K. Narasimhan,
and O. Press, “Swe-agent: Agent-computer interfaces enable automated
software engineering,” 2024. [Online]. Available: https://arxiv.org/abs/
2405.15793

[12] “Together We Are Better: LLM, IDE and Semantic Embedding to Assist
Move Method Refactoring,” https://mm-assist.netlify.app/, under review
at a SE conference.

[13] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, 2022.

https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://github.com/features/copilot
https://doi.org/10.1145/3663529.3663803
https://doi.org/10.1145/2950290.2950305
https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024
https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://mm-assist.netlify.app/

	Introduction
	Refactoring Powered by IDE-Integrated FM-based Agents
	Research Challenges
	Aligning with Developers' Refactoring-Preferences
	Agent and Developer Interface
	Sandboxing the IDE's APIs
	Evaluating the Agent
	Evaluation against an Oracle of refactorings in OSS
	Sending Patches to OSS projects


	Conclusion
	References

