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Abstract—Deep Learning (DL) is widely used in various appli-
cations, ranging from healthcare to chatbots. However, violations
of usage protocols in these applications can lead to severe conse-
quences, such as inaccurate predictions and system failures. To
address this issue, researchers have proposed several techniques
for detecting and preventing bugs in deep learning programs.
However, existing static analysis tools only focus on undefined
variables and shape-related bugs or do not consider a crucial
property of DL programs, such as data dependency between
layers. To address this challenge, we propose NEURALSTATE,
an approach to detect performance and program crash bugs
in a DL program. NEURALSTATE follows a four-step process: (i)
gather specifications for Deep Learning operations from different
sources; (ii) introduce abstract states to represent these Deep
Learning operations; (iii) design formal rules for transitioning
between states based on the specifications; (iv) utilize a combi-
nation of standard analysis techniques (i.e., typestate and value
propagation) to identify bugs in a DL program. Our evaluation
using a real-world benchmark that contains 45 real-world buggy
programs shows that NEURALSTATE can precisely detect more
bugs than the state-of-the-art tool, NeuraLint. Specifically, it
shows a 25% relative improvement in precision and 63% relative
improvement in recall when compared with an existing technique.

I. INTRODUCTION

Deep Learning (DL) rapidly transforms various domains,
from software engineering to conversational AI [1], [2]. How-
ever, the popularity of DL can also bring challenges to devel-
opers, notably in the adherence to Application Programming
Interface (API) usage protocols. Violations of these protocols
can lead to significant issues, such as incorrect predictions or
program crashes [3]. For instance, studies indicate that API-
related bugs are responsible for up to 16% of performance
issues and cause over 66% of program crashes in Keras [3].
These bugs commonly arise from invalid API call sequences
or unsuitable input to operations [3].

Popular libraries like TensorFlow, Keras, and PyTorch [4]–
[6] provide developers with various DL operations, each
having specific API usage protocols. However, these protocols
often lack formal specifications, making it challenging for
developers to understand and comply with them effectively,
especially given their complexity and volume [3].

Current state-of-the-art in DL bug detection. Several
techniques have been proposed to detect bugs in DL pro-
grams [7]–[9]. While some focus on runtime performance
issues or tensor shape errors [10], [11], they require access
to training data and model training procedures. NeuraLint [9]

is a notable static analysis tool for detecting API usage viola-
tions. It constructs a control flow graph using intra-procedural
analysis and employs a graph-based verification technique to
identify DL bugs. However, NeuraLint struggles to handle data
dependencies and co-changing statements crucial for precise
bug detection [12].

Figure 1 showcases a buggy DL program from Stack
Overflow [13] where the final layer uses an incorrect activation
function (‘sigmoid’). Fixing this bug requires modifying both
the activation function to ‘softmax’ and the loss function to
‘categorical crossentropy’. Such co-dependent changes, where
multiple statements require simultaneous modifications, are
prevalent in DL programs but often overlooked by existing bug
detection tools, like NeuraLint. We refer to these statements
as co-changing statements.

NEURALSTATE: our approach for DL bug detection. To
address the limitations of existing tools, we propose NEU-
RALSTATE, an approach for detecting performance and pro-
gram crash bugs in deep learning programs. NEURALSTATE
leverages formal specifications of DL operations and combines
typestate analysis and value propagation to identify protocol
violations. Typestate analysis ensures that the program adheres
to the expected sequence of layer operations, while value
propagation verifies the validity of inputs to each layer. This
combination allows our approach to detect both control flow
and data flow errors in DL programs.

NEURALSTATE relies on three key observations.
1) Capturing Data Dependencies. DL programs often ex-

hibit data dependencies, where different code segments
interrelate through shared data. For example, in the above
program, the layers on (lines 5-9) and (lines 11-15) are
designed to process different inputs at line 2 and line 3,
respectively. Tools, such as NeuraLint that overlook these
object-oriented aspects in favor of a procedural perspec-
tive can miss the implicit parameters (e.g., ‘(input 1)’
at line 5), thus leading to inaccurate bug reporting. This
happens because missing the implicit parameters leads
to building a representation akin to Figure 1 (b). This
oversight highlights the need for an approach that cap-
tures data-dependent statements, thus building a correct
representation as shown in Figure 1 (c).

2) Considering Interdependent Changes. Fixing protocol
violations in DL programs often requires modifying mul-



Note: The numbers in the circles represent the line number of an operation.

Fig. 1: Data-dependence-sensitive control flow in NEURALSTATE, instead of data-dependence-insensitive flow in NeuraLint

tiple interdependent statements simultaneously. For ex-
ample, changing the activation function in the final layer
(Figure 1, line 23) necessitates a corresponding change in
the loss function (line 28). Effective bug detection must
consider these interdependencies to accurately identify
and repair protocol violations.

3) DL Bugs Can Stem from Control Flow or Input Value
Violations. Deep learning programs rely on both the
correct sequence of layer operations and the validity of
input values. For example, omitting a required layer, such
as Flatten(), before a Dense layer can lead to program
crashes. Similarly, providing incompatible input to an
activation function, such as using ‘sigmoid’ instead of
‘softmax’ for multi-class classification tasks, can result
in incorrect predictions or unexpected behavior.

We conducted experiments to evaluate NEURALSTATE on
two benchmarks. The results demonstrate a 35.1% improve-
ment in precision and a 19.4% relative gain in recall for
NEURALSTATE over the state-of-the-art NeuraLint [9] on
the first benchmark. On the second benchmark, NEURAL-
STATE shows a 15.5% relative improvement over NeuraLint
in precision and 107% improvement in recall. An ablation
study further outlines the contribution of combining typestate
analysis and value propagation as integral to NEURALSTATE’s
superior performance. Detailed experimental outcomes and
comparative analyses are presented in Section VII.

This work makes the following key contributions:

1) We introduce NEURALSTATE, an approach for detecting
DL usage protocol violations with a combination of
typestate and value propagation techniques.

2) We propose a representation of a DL program that
accounts for data dependencies among layers.

3) We propose abstract states representing DL operations
and design formal state transition rules based on DL
specifications.

4) We evaluated NEURALSTATE against the state-of-the-art
static analysis tool for DL.

A replication package of our tool is available at [14].

II. PRELIMINARIES

In this section, we discuss the grammar that we propose to
capture the common DL operations, describe how we collect
specifications, and present our typestate-based approach for
formally specifying the behavior of DL programs.

TABLE I: Grammar Representing Supported DL Operations

Symbol Definition Description
N ::= L :: N | L Model composed of one or more layers
L ::= Input(...) Input layer

| Conv2D(v, k, af, ...) 2D convolutional layer
| Conv1D(v, k, af, ...) 1D convolutional layer
| MaxPooling2D(k) 2D max pooling layer
| MaxPooling1D(k) 1D max pooling layer
| Flatten() Layer that flattens input
| Dense(v, af, ...) Fully connected layer
| Dropout(r) Dropout layer
| LayerNormalization() Normalize layer
| BatchNormalization() Batch Normalize layers
| Concatenate(L :: L) Merge multiple layers
| Compile(lf, o, ...) Compile the neural network

af ::= linear Activation function
| relu Activation function
| softmax Activation function
| sigmoid Activation function
| tanh Activation function

lf ::= binary crossentropy Loss function of the model
| categorical crossentropy

o ::= adam | sgd Optimizer function of the model
v ::= x|x ∈ Z+ Number of units or neurons
k ::= (x, y)|x ∈ Z+, y ∈ Z+ kernel or pooling size
r ::= x|x ∈ R+ Dropout rate
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Fig. 2: The workflow of NEURALSTATE

A. Supported DL Operations

We denote deep neural network as N in our grammar,
where N is composed of layers (L) and (‘::’) denotes the
concatenation of layers. These layers are fundamental building
blocks that transform input data into an output. As shown in
Table I, our approach supports common deep-learning layers
with real-world applications, such as image recognition and
regression tasks. These common layers are selected following
a related work by Nikanjam et al. [9].

B. Collecting DL Specifications

We collected DL specifications from prior studies [9],
adding an extra rule from the DL library’s official docu-
mentation (i.e., high dropout rate) [4]. In total, we encode
24 DL specifications using finite-state automaton. Our ap-
proach focuses on Fully-Connected Neural Networks (FCNNs)
and Convolutional Neural Networks (CNNs) similar to Neu-
raLint [9]. We have included all specifications as a supplement
for further reading.

C. Finite-State Automaton Based Specification

After collecting the specifications, the next step is to encode
them as a finite-state automaton (FSA). Our FSA is defined as
a six-tuple: (S, s0, E,A, L, δ), where S is the set of abstract
states representing the different phases of a DL program’s
execution, s0 is the initial state, E is the error state, A is
the accepting state, L is the set of DL operations, and δ is the
transition function.

The transition function δ : S×L → S takes the current state
sc ∈ S and a DL operation l ∈ L as input and determines
the next state sd ∈ S based on the specification rules. If
the transition is valid, the automaton moves to the new state
sd; otherwise, it transitions to the error state E, indicating a
specification violation.

Through a comprehensive study of deep learning specifica-
tions and an analysis of common operations employed in DL
models, as documented in prior work [9], we derived a set of
11 abstract states that encompass the phases and operations
encountered in DL programs. Table II presents the abstract
states with a brief description.

Our approach formalizes the DL specifications as a finite-
state automaton (FSA) and abstracts the DL program states
into a finite set of abstract states. This formalization enables
systematic verification of DL programs against the ground

TABLE II: States Representing Phases in DL Program

Abstract State Description
Init The initial state of the program
Hidden Represents the initial layers of the neural network,

involving input data processing
Dense Represents dense or fully-connected layers in the neural

network
Conv Represents convolutional layers, including both 1D and

2D convolutions
Pooling Represents pooling layers, used in conjunction with

convolutional layers
Reshape Represents reshaping operations, often required after

convolutional or pooling layers to match the input shape
for subsequent layers

Regularize Represents regularization techniques, such as dropout,
to prevent overfitting

Normalize Represents normalization layers, such as batch normal-
ization or layer normalization

Merge Represents operations that merge or concatenate multi-
ple input tensors

LastHidden Represents the final dense layer before the output layer,
responsible for transforming the features into the desired
output format

Compiled The accepting state, representing the final configuration
of the neural network, including the loss function and
optimizer

truth specifications. Consequently, we leverage typestate anal-
ysis, which is particularly suitable for enforcing behavioral
constraints and ensuring that an object transitions through a
sequence of valid states defined by a formal specification or
protocol [15], [16].

III. APPROACH

This section presents NEURALSTATE, an approach for de-
tecting bugs in DL programs by combining typestate analysis
and value propagation techniques.

A. Overview

Figure 2 illustrates the workflow of NEURALSTATE, which
consists of three main steps:

• Extracting Layer Information: NEURALSTATE takes
a DL program as input and begins by extracting the
statements and identifying the data dependencies between
them ( 1 ). This step is performed using the .layers()

API provided by the Keras library, which allows NEU-
RALSTATE to access layer information before the model
training begins, eliminating the need for the training
dataset or the actual training process.
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Fig. 3: A NeuralState Sequence for the DL program shown in Figure 4, with missing state in red

• Constructing the NeuralState Sequence (NSS): The
extracted data dependencies are used to construct a rep-
resentation of the DL program called the NeuralState
Sequence ( 2 ). The NSS serves as an abstract form of
the DL model, capturing the data-dependence sensitive
control flow, where nodes represent states and edges
denote the executed operations.

• Identifying DL Violations: NEURALSTATE applies a
combination of typestate analysis and value propagation
techniques, collectively referred to as NeuralState Analy-
sis (NSA), to identify DL violations ( 3 ). Typestate anal-
ysis is used to identify invalid sequences of operations or
API calls, while value propagation is employed to identify
potential invalid inputs for DL layers. The NSA utilizes
the ground truth rules encoded as a finite state automaton
(FSA) and the NSS representation of the DL program
under analysis.

B. Key Ideas

Based on the observations presented in §I, we introduce the
following key ideas:

1) Data-Dependence-sensitive Control Flow: we introduce
the NSS, which accounts for data dependencies in repre-
senting DL programs. The NSS is constructed from the
source code based on the grammar of DL operations (see
Table I). Then, NSS is matched against the ground truth
specification (FSA) to identify DL bugs.

2) Handling Co-changing Statements: NEURALSTATE
employs context-sensitive analysis to handle co-changing
statements, where the correct behavior depends on
the context and interactions between multiple state-
ments. This sensitivity allows NEURALSTATE to perform
lookups, update values, and track the effects of co-
changing statements.

3) Combining Typestate and Value Propagation Anal-
ysis: NEURALSTATE combines typestate analysis with
value propagation to address both control flow and
data flow aspects of DL programs. Typestate analysis
examines the sequence of layer operations to identify
procedural anomalies, while value propagation monitors
the validity of input values, ensuring that they conform
to the specified constraints.

IV. DL REPRESENTATION

This section introduces the NeuralState Sequence, a novel
representation that captures a DL program’s data-dependence-
sensitive control flow. The NSS provides a formal abstraction

of the DL model’s structure and enables precise analysis of
its behavior.

A. Preliminary

Definition 1. (NeuralState Sequence) The NeuralState Se-
quence is defined recursively as follows:

NSS =

{
s l :: NSS if l ∈ L

s if l ∈ ∅

where s ∈ S is an abstract state node, l ∈ L is a layer
operation representing the edge between nodes, and :: denotes
the concatenation operator. The base case s represents the
terminal state where no further operations are applied.

Intuitively, the NSS represents the sequence of abstract
states that a DL program traverses during its execution, with
each state transition determined by the corresponding layer
operation.

1 ...
2 model = keras.Sequential(
3 [
4 keras.Input(shape=(28, 28, 1)),
5 layers.Conv2D(32, kernel_size=(3, 3),

activation="relu"),
6 layers.MaxPooling2D(pool_size=(2, 2)),
7 layers.Conv2D(64, kernel_size=(3, 3),

activation="relu"),
8 layers.MaxPooling2D(pool_size=(2, 2)),
9 layers.Dropout(0.5),
10 + layers.Flatten()
11 layers.Dense(10, activation="softmax"),
12 ]
13 )
14 ...
15 model.compile(loss="categorical_crossentropy",

optimizer="adam", metrics=["accuracy"])
16 model.fit(x_train, y_train,

batch_size=batch_size, epochs=epochs,
validation_split=0.1)

17 ...

1 NeuralState Error -> You need to flatten the
layer before adding a Dense layer.

Fig. 4: A DL program with a crash bug and its error report

B. Constructing the NSS
Let P be a DL program defining a neural network N . We

construct the NeuralState Sequence NSS(P ) by analyzing the
structure of N and the relationships between its layers. First,
we extract the sequence of layers L = [l1, l2, . . . , lm] from N
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using the model.layers attribute provided by the DL library
(e.g., Keras). This attribute allows us to access the layers of
the model in the order they are defined in the program.

To construct the NSS, we iterate over the layers in L and
perform the following steps for each layer li:

1) Determine the corresponding abstract state si ∈ S based
on the type and characteristics of li. We define a mapping
function F : L → S, that maps each layer type to
its corresponding abstract state according to the DL
specification. Formally, si = F (li).

2) Let D(li) ⊆ {l1, . . . , li−1} denote the set of layers that
li directly depends on, i.e., the layers whose outputs are
used as inputs to li. Check if all the layers in D(li) have
already been processed and their corresponding state-
operation pairs have been added to the NSS. This ensures
that the data dependencies of li are satisfied.

3) If the condition in step 2 is met, append the state-
operation pair (si, li) to the NSS. This indicates that the
layer operation li is applicable in the abstract state si and
transitions the model to the next state.

1) Example of NSS: Figure 3 illustrates the NSS for
the DL program shown in Figure 4. Each node in the NSS
represents an abstract state (e.g., Hidden, Conv, Pooling), and
each edge represents a layer operation that transitions the
program between states.

Analyzing the NSS reveals a missing Reshape state between
the Regularize and LastHidden states, indicating a bug in
the program’s structure due to the omission of a required
Flatten() layer at line 10. This insight, provided by NEU-
RALSTATE, offers actionable feedback to guide developers in
fixing the usage protocol violation.

V. DL PROTOCOL VIOLATION DETECTION

This section discusses a high-level overview of state transi-
tion rules using an algorithm and presents a precise formula-
tion of state transition rules for DL.

Algorithm 1 NSA Analysis
1: procedure NSA(NSS, FSA)
2: Γ← [] ▷ Initialize empty context
3: sc ← NSS.getF irstNode() ▷ Starting in ‘init’ state
4: sd ← NSS.getNextNode(sc)
5: Violations ← []
6: while sd ̸= ∅ do
7: l← NSS.getOperation(sd)
8: sn ← FSA.δ(sc, l) ▷ Determine the next state based on δ
9: if sn = E then ▷ Check if it is an invalid transition

10: Violations ← Violations ∪ {(sc, sd)}
11: else
12: Γ← UpdateContext(Γ, sc, l) ▷ Update context
13: sc ← sd
14: sd ← NSS.getNextNode(sc)

15: return Violations, Γ

A. NeuralState Analysis Algorithm

The NSA algorithm initializes an empty context (Γ) to track
the program’s execution history (line 2). It then sets the current
state (sc) to the initial state of the NSS and fetches the next
transition state (sd) from the current state (lines 3-4).

Γ ⊢ δ(s, l) = s′,Γ′ Γ′ ⊢ NSS = s′′,Γ′′ s′′ ∈ A

Γ ⊢ s l :: NSS = A,Γ′′ (NSA)

Γ, Hidden 7→ True = Γ′

Γ ⊢ δ(Init, Input()) = Hidden,Γ′ (Hidden)

Γ(Conv) = False Γ(Reshape) = False
v ∈ Z+ af ∈ {relu, tanh} sc ∈ {Flatten,Dense,Hidden}

Γ, Dense 7→ True = Γ′

Γ ⊢ δ(sc, Dense(v, af)) = Dense,Γ′ (Dense 1)

Γ(Reshape) = True
v ∈ Z+ af ∈ {relu, tanh} sc ∈ {Flatten,Dense,Hidden}

Γ, Dense 7→ True = Γ′

Γ ⊢ δ(sc, Dense(v, af)) = Dense,Γ′ (Dense 2)

l ∈ {Conv1D(v, k, af), Conv2D(v, k, af)}
v ∈ Z+ k ∈ Z+ af = relu sc ∈ {Hidden, Pooling}

Γ, Conv 7→ True, cv 7→ v = Γ′

Γ ⊢ δ(sc, l) = Conv,Γ′ (Conv 1)

l ∈ {Conv1D(v, k, af), Conv2D(v, k, af)}
v ∈ Z+ k ∈ Z+ af = relu sc ∈ {Hidden, Pooling}
Γ(Conv) = True Γ(cv) ≤ v Γ, cv 7→ v = Γ′

Γ ⊢ δ(sc, l) = Conv,Γ′ (Conv 2)

l ∈ {MaxPooling1D(k), MaxPooling2D(k)}
k ∈ Z+ Γ, Pooling 7→ True = Γ′

Γ ⊢ δ(Conv, l) = Pooling,Γ′ (Pooling)

Γ(Conv) = True sc ∈ {Conv, Pooling}
Γ, Reshape 7→ True = Γ′

Γ ⊢ δ(sc, Flatten()) = Reshape,Γ′ (Reshape)

l ∈ {layerNormalization(), batchNormalization()}
sc ∈ {Dense, Conv, Pooling} Γ, Normalize 7→ True = Γ′

Γ ⊢ δ(sc, l) = Normalize,Γ′ (Normalize)

r ≤ α sc ∈ {Dense, Conv, Pooling}
Γ, Regularize 7→ True = Γ′

Γ ⊢ δ(sc, Dropout(r)) = Regularize,Γ′ (Regularize)

sc ∈ {Dense, Conv, F latten} Γ,Merge 7→ True = Γ′

Γ ⊢ δ(sc, Concatenate(L :: L)) = Merge,Γ′ (Merge)

Γ(Conv) = False Γ(Reshape) = False
0.8 ≥ v ≥ 0 af ∈ {linear, sigmoid, softmax}

sc ∈ {Reshape,Regularize,Normalize}
Γ, f 7→ af = Γ′ Γ′, LastHidden 7→ True = Γ′′

Γ ⊢ δ(sc, Dense(v, af)) = LastHidden,Γ′′ (LastHidden 1)

Γ(Reshape) = True
0.8 ≥ v ≥ 0 af ∈ {linear, sigmoid, softmax}

sc ∈ {Reshape,Regularize,Normalize}
Γ, f 7→ af = Γ′ Γ′, LastHidden 7→ True = Γ′′

Γ ⊢ δ(sc, Dense(v, af)) = LastHidden,Γ′′ (LastHidden 2)

Γ(f) ∈ {linear, sigmoid} Γ ⊢ lf = binary crossentropy
o ∈ {adam, sgd} Γ, Compiled 7→ True = Γ′

Γ ⊢ δ(LastHidden, Compile(lf, o)) = Compiled,Γ′ (Compiled 1)

Γ(f) = softmax Γ ⊢ lf = categorical crossentropy
o ∈ {adam, sgd} Γ, Compiled 7→ True = Γ′

Γ ⊢ δ(LastHidden, Compile(lf, o)) = Compiled,Γ′ (Compiled 2)

Fig. 5: State Transition Rules for DL Specifications
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The algorithm iterates through the transitions in the NSS
until there are no more transitions (lines 6- 14). For each
transition, it retrieves the corresponding DL operation (l) from
the NSS and determines the next state (sn) using the FSA’s δ.

If the next state (sn) is the error state (E), indicating an
invalid transition according to the state transition rules, the
algorithm adds the transition pair (sc, sd) to the set of viola-
tions. Otherwise, it updates the context (Γ) based on the state
transition rules using the UpdateContext function (line 12).
After processing each transition, the algorithm updates the
current state (sc) to the next transition state (sd) and fetches
the subsequent transition state from the NSS. Finally, after
iterating through all transitions, the algorithm returns the set
of violations and the final context (Γ).

B. Precise Formulation of State Transition Rules for DL

Figure 5 depicts the state transition rules, which utilize
a context (Γ) to track the program’s execution history. This
context stores information about previously visited states and
relevant values, enabling the analysis to handle state depen-
dencies and co-changing statements.

The NSA rule serves as the entry point, initializing an
empty context and inductively applying the transition function
δ to validate each operation in the DL program’s execution
trace. If a transition is valid according to the defined rules,
the current state is updated, and the analysis proceeds to the
next operation. Otherwise, a violation is reported, indicating
a potential bug in the program. For instance, the Dense rule
enforces constraints on the activation function and the number
of units. To illustrate how the rules are read, consider the
second Dense rule: “If the current state sc is Flatten, Dense,
or Hidden, the number of units v is a positive integer, the
activation function af is non-linear (i.e., relu or tanh) and
both Conv and Reshape has been visited before (based on the
context Γ), then the transition to the Dense state is valid, and
the context is updated to reflect that Dense has been visited.”
Handling Co-Changing Layers. NEURALSTATE handles
these co-changing statements through the LastHidden and
Compiled rules. The LastHidden rule validates the final
dense layer’s activation function and the number of units
based on the problem type (binary classification, multi-class
classification, or regression). It then records the activation
function used during that execution by updating the context
(i.e., f 7→ af = Γ′). In the Compiled rule, the analysis con-
sults the recorded activation function f to verify that it matches
the appropriate loss function based on the specification.

Most importantly, if a violation is detected in the LastHid-
den state, indicating a potential inconsistency between the
activation function and the number of units, the analysis as-
sumes that a fix has occurred. This is a reasonable assumption
because, in the final dense layer, the activation function is
typically either a single-class or multi-class activation function,
each with a specific loss function (binary crossentropy or
categorical crossentropy, respectively). Therefore, the analysis
negates the recorded activation function f and matches it
against the corresponding loss function.

Finally, the Compiled rule represents the accepting state,
verifying that the loss function and optimizer are consistent
with the activation function used in the final layer.

VI. EMPIRICAL EVALUATION

In this section, we describe the evaluation of our approach.
First, we briefly present the research questions. Next, we
describe our experimental methodologies.

A. Research Questions

Our evaluation aims to answer the following research ques-
tions:

• RQ1: Effectiveness Evaluation.
(A) How effective is NEURALSTATE compared with the

state-of-the-art NeuraLint on their own benchmark?
(B) How effective is NEURALSTATE compared with the

state-of-the-art NeuraLint on an unseen benchmark?
• RQ2: Comparative Analysis of Bug Detection Ca-

pabilities. To what extent does NEURALSTATE’s bug
detection overlap with NeuraLint’s, and what unique bug
detection strengths do NEURALSTATE exhibit?

• RQ3: Impact of Analysis Techniques. How do the two
key analysis techniques (value-propagation and typestate
analysis) in NEURALSTATE impact its effectiveness?

• RQ4: Time Complexity Comparison. How is the time-
complexity of NEURALSTATE compared to NeuraLint?

B. Experimental Methodology

Benchmarks. To ensure a fair and informative comparison,
we evaluate the performance of NEURALSTATE on two bench-
marks. The first benchmark, NLBench, is from NeuraLint’s
work [9] and contains 26 real-world Keras buggy programs
collected from Stack Overflow (SO). The second benchmark,
HumbatovaBench, is taken from a prior study by Humbatova
et al. [17] and consists of 19 real-world buggy programs with
complete Keras code collected from SO and GitHub posts.
In total, the benchmarks contain 22 bugs with a program
crash symptom, 21 with bad performance, and 2 with incorrect
functionality symptoms.

Evaluation Metric. We adopted the same evaluation met-
rics as in NeuraLint: Precision = TP

TP + FP and Recall = TP
TP + FN ,

where TP: True Positive, FP: False Positive, and FN: False
Negative. For evaluating the time complexity, we utilize the
curve fitting method to obtain a model representing the data,
as used in related works [18]. We used the coefficient of de-
termination (R2 ∈ [0, 1]) to evaluate the model’s effectiveness
in fitting the data points. The closer the R2 value is to 1, the
more scalable the approach is.

Baselines. We compared our approach against the state-of-
the-art DL bug detection tool, NeuraLint [9]. NeuraLint builds
a graph representation of DL programs and runs a graph-based
verification tool to capture the bugs.

Implementation. NEURALSTATE is implemented using
Python. We use the NetworkX library to build the NeuralState
Sequence and the Matplot library to visualize it. We used the
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TABLE III: Performance of NEURALSTATE on NLBench (RQ1-A), where PC=Program Crash, BP=Bad Performance,
IF=Incorrect Functionality. Differences are emphasized with green and orange colors.

Prog SO ID Symptom SO Fix NeuralState NeuraLint
+ Specification Violations TP FP FN TP FP FN

1 44399299 PC Change the shape of the input layer, Use softmax instead
of sigmoid

1 0 1 0 1 2

2 43464835 PC Change the shape of the input layer 0 0 1 0 0 1
3 42913869 PC Change the number of units for the output layer, Change

the shape of the input layer
0 0 2 0 0 2

4 48518434 PC Reduce the spatial size of both Conv. filtering and
pooling widows

0 0 1 0 0 1

5 40857445 PC Add a flatten layer, the last layer missing 2 0 0 0 0 2
6 50555434 BP Use softmax activation instead of sigmoid and categor-

ical crossentropy loss instead MAE
2 0 0 1 0 1

7 46177505 PC Change spatial size of Conv. filtering
and pooling widows 0 0 3 0 0 3

8 50426349 PC Change the shape of the input layer 2 0 1 2 0 1
9 38584268 PC Add a flatten layer 2 0 0 2 1 0
10 45120429 PC Change the number of units for the output layer, Add a

flatten layer
3 0 0 3 0 0

11 45378493 IF Use a sigmoid for last layer activation 4 0 0 4 1 0
12 45711636 PC Use channels last format for input data 0 0 1 0 0 1
13 34311586 BP Remove the last layer activation 2 0 0 2 1 0
14 50079585 1 BP Use softmax activation instead of sigmoid and categor-

ical crossentropy loss instead of binary crossentropy
1 0 0 1 0 0

15 50079585 2 IF Change the number of units for the output layer 1 0 0 1 0 0
16 51749207 BP Use of softmax activation instead of sigmoid 1 0 0 1 2 0
17 53119432 PC Add a flatten layer 1 0 0 1 1 0
18 55731589 PC Use of “same” instead of “valid” for layer padding type 0 0 1 0 0 1
19 58844149 BP Use of softmax activation instead of sigmoid 2 0 0 1 1 1
20 61030068 PC Add a flatten layer 1 0 0 1 0 0
21 33969059 BP Change the number of units for the output layer 1 0 0 1 0 0
22 44184091 PC Fix the limit size for input sequence data 1 0 1 1 0 1
23 44322611 BP Prune the DNN, use RMSprop instead of SGD 3 0 0 2 0 1
24 49117607 PC Reduce the spatial size of both Conv. filtering and

pooling widows
1 0 0 1 0 0

25 55776436 BP
Try Data augmentation, Regularization,
filtering spatial size reduction, and DNN
Depth Increase

4 0 0 4 0 0

26 60566498 BP Try Data augmentation and Hyperparameters Tuning 2 0 1 2 0 1
TOTAL 37 0 13 31 8 19

NEURALSTATE demonstrates higher effectiveness when detecting bugs that have data dependencies
(i.e., rows 1, 5), as well as the bugs that have co-change statements (i.e., rows 6, 11, 13, 16, 19)

Keras library to extract the layer names, as the collected bench-
marks are based on it. All the experiments were conducted on
a 3.6 GHz 8-Core Intel Core i9 with 64 GB of 2400 MHz
DDR4 memory. We use the Python time library to measure
the execution time of detecting bugs.

VII. EMPIRICAL RESULTS

This section presents the results of our experiments.

A. Effectiveness Evaluation (RQ1)
1) Comparison on NLBench (RQ1-A):
Experimental Setup. We evaluate NEURALSTATE on NL-

Bench.
Detailed Analysis. The detailed results of NEURALSTATE’s

performance on NLBench are presented in Table III. NEU-
RALSTATE correctly identifies 37 TP out of 50 bugs, while
NeuraLint identifies 31 TP. Moreover, NEURALSTATE reports
no FP compared to NeuraLint’s 8 FP. This substantial reduc-
tion in FP demonstrates NEURALSTATE’s ability to minimize
false alarms, showing a prioritization of soundness over com-
pleteness.

The experimental results on NLBench demonstrate NEU-
RALSTATE’s effectiveness in detecting a wide range of DL
bugs, including those related to activation functions, missing
layers, and performance issues. The tool’s data-dependence-
sensitive analysis and value propagation techniques enable it
to capture data dependencies and identify bugs that are often
missed by existing tools.

Overview of Results. Table V presents a summary of the
performance comparison between NEURALSTATE and Neu-
raLint on NLBench. NEURALSTATE achieves a precision of
100% and a recall of 74%, outperforming NeuraLint by
20.6% and 12%, respectively. These improvements translate
to relative gains of 35.1% in precision and 19.4% in recall,
highlighting NEURALSTATE’s bug detection capabilities.

2) Comparison on HumbatovaBench (RQ1-B):
Experimental Setup. To evaluate the generalization capabil-

ity of our approach (NEURALSTATE) on a broader range of
real-world bugs, we conducted an empirical evaluation on an
unseen dataset curated by Humbatova et al. [17].

Detailed Analysis. Table IV presents the detailed results
of NEURALSTATE’s performance in detecting usage protocol
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TABLE IV: Performance of NEURALSTATE on HumbatovaBench (RQ1-B), where PC=Program Crash, BP=Bad Performance

Prog SO ID Symptom SO Fix NeuralState NeuraLint
+ Specification Violations TP FP FN TP FP FN

1 34716454 PC Change batch norm layer position, Change softmax function,
input shape missing

2 0 1 0 0 3

2 37213388 BP Change optimizer, DNN Depth Increase 1 0 1 1 0 1
3 41823068 BP Use softmax, Add regularization 2 0 0 1 0 1
4 45793856 BP Use sigmoid and binary crossentropy loss, pooling missing,

Change the spatial size of Conv. filtering
4 0 0 0 0 4

5 47272383 BP Try to increase your Network Depth, Removing the Batch
Normalisation, remove the Dropout layer

2 0 1 2 0 1

6 36392966 PC Change the shape of the input layer 0 0 1 0 0 1

7 45499757 PC Change the shape of the input layer, DNN
Depth Increase 1 0 1 1 0 1

8 43314810 PC Change the shape of the input layer, Use sigmoid and
binary crossentropy, Flatten missing, Pooling missing

4 0 1 3 0 2

9 47324571 PC Change the shape of the input layer 0 0 1 0 0 1
10 40369951 BP Use a lower learning rate 0 0 1 0 0 1
11 43944981 PC Change the shape of the input layer, Change the spatial size

of Conv. filtering
1 0 1 1 0 1

12 48325272 BP Use softmax and categorical crossentropy loss instead of
MSE

1 0 1 0 0 2

13 46292203 PC Change the shape of the input layer 1 0 0 0 0 1
14 46642627 BP Change kernel initializer 0 0 1 0 0 1
15 48385830 BP Use softmax and categorical crossentropy loss instead of

MSE
2 0 1 1 0 2

16 37624102 BP Use a lower learning rate 0 0 1 0 0 1
17 41999686 BP Use softmax and categorical crossentropy loss instead of

MSE
2 0 0 1 1 1

18 44493395 BP Change loss to categorical crossentropy, Regularization 2 0 0 2 0 0
19 50914860 BP Use softmax and categorical crossentropy loss 2 0 0 0 1 2

TOTAL 27 0 13 13 2 27
NEURALSTATE demonstrates more effectiveness when detecting bugs that have high data dependencies

(i.e., row 1), as well as bugs that have co-change statements (i.e., rows 3, 4, 8, 12, 15, 17, 19)

violations on HumbatovaBench.

A closer examination of the results reveals that NEU-
RALSTATE effectively detects bugs with data dependencies
and those involving co-changing statements. For instance, in
row 1, NEURALSTATE correctly identifies two out of three
bugs related to incorrect layer positions and invalid activation
functions, while NeuraLint fails to detect any of these bugs.
Similarly, in rows 3, 4, 8, 12, 15, 17, and 19, NEURALSTATE
outperforms NeuraLint in detecting bugs that require simul-
taneous change to multiple statements, such as changing the
activation function and the corresponding loss function.

These findings underscore the importance of NEURAL-
STATE’s data-dependence-sensitive analysis and its ability to
handle co-changing statements.

Overview Results. As illustrated in Table V, NEURALSTATE
achieved 100% precision and 67.5% recall on Humbatov-
aBench, representing a 13.4% and 35% improvement over
NeuraLint, respectively. This translates to a 15.5% relative
improvement in precision and a notable 107% relative im-
provement in recall compared to NeuraLint.

TABLE V: Precision and Recall Results

NLBench HumbatovaBench
Approach Precision Recall Precision Recall

NeuraLint [9] 74.0% 62.0% 86.6% 32.5%
NeuralState 100.0% 74.0% 100.0% 67.5%

(our approach) (+20.6%) (+12.0%) (+13.4%) (+35.0%)

B. Comparative Analysis of Bug Detection (RQ2)
Experimental Setup. We conducted a comparative analysis

to examine the bugs detected by both NEURALSTATE and
NeuraLint, as well as the bugs uniquely identified by each tool.
This analysis aimed to understand the strengths and limitations
of the two approaches in detecting deep learning code bugs.

Results. Table VI presents the results of the comparative
analysis. NEURALSTATE detected 18 unique bugs, demon-
strating its superior bug detection capabilities. In contrast,
NeuraLint did not detect any unique bugs beyond those found
by NEURALSTATE, highlighting its limitations in handling
data dependency and co-changing features. The table further
reveals that both tools overlapped in detecting 42 bugs across
the two benchmarks, indicating a common set of bugs that
both approaches could effectively identify.

The discrepancy in bug detection capabilities, where
NEURALSTATE identified 18 unique bugs, can be attributed
to two key factors. First, NeuraLint’s inability to identify
co-changed statements hindered its ability to detect bugs
that need multiple fixes. Second, out of the 18 cases where
NEURALSTATE uniquely reported bugs, NeuraLint exhibited
false positives or false negatives in 3 cases due to unresolved
data dependencies.

To illustrate the limitations, we examine concrete examples:
1) Case study with Program 16 in Table III (Program

Crash): Figure 6 shows a buggy program from the Neu-
raLint’s [9] benchmark. It uses the sequential API to define 6
layers of convolutional and dense operations. The bug cause
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1 ...
2 model = Sequential()
3 model.add(Conv1D(filters=20,

kernel_size=4,activation=’relu’,
padding=’same’, input_shape=(600,1)))

4 model.add(MaxPooling1D(pool_size = 2))
5 model.add(Dropout(0.3))
6 model.add(Flatten())
7 model.add(Dense(50, activation=’relu’,

input_dim = 600))
8 model.add(Dense(1, activation=’softmax’))
9 model.compile(loss="binary_crossentropy",

optimizer="nadam", metrics=[’accuracy’])

Fig. 6: NeuraLint false positive report (Program 16, Table III)

is the use of incorrect activation and loss functions. To fix the
bug, a developer should change ‘softmax’ to ‘sigmoid’ (line
8). Both tools accurately identify this bug. However, NeuraLint
reports an additional false positive. It incorrectly identifies an
issue with the loss function ‘binary_crossentropy’ on line 9
since it does not consider the relation with the activation func-
tion in the statement on line 8. This highlights the significance
of dependencies and co-changes in DL bug detection.

TABLE VI: True Positive Overlapping Analysis

Category NLBench HumbatovaBench Total
Unique to NeuraLint 0 0 0

Overlap 30 12 42
Unique to NeuralState 6 12 18

2) Evaluation of the motivating example.: Here, we
evaluated NEURALSTATE and NeuraLint using the example
in Section 1. NEURALSTATE correctly identifies two bugs
at line 23 (‘sigmoid’ → ‘softmax’) and on line 28 (‘bi-
nary crossentropy’ → ‘categorical’). Additionally, NEURAL-
STATE did not report any false positives. NeuraLint reports 1
false positive and 0 true positives because it does not consider
the data dependencies among the layers and considers that all
hidden layers are applied to the second input.

Our results validate two key observations: (1) resolving
data dependencies and (2) identifying co-changed statements
is important for effective bug detection in deep learning code.

C. Impact of Analysis Techniques (RQ3)

Experimental Setup. To validate our third observation (Sec-
tion I) and investigate the individual contributions of value
propagation (VP) and typestate analysis (TSA) to NEU-
RALSTATE’s effectiveness, we conducted an ablation study
with two variants: (1) NEURALSTATE without TSA, and
(2) NEURALSTATE without VP. Since VP incorporates co-
change analysis, the second variant’s results help validate its
impact on our approach. The dependence-sensitive analysis
is core to NEURALSTATE, and removing it would reduce
NEURALSTATE to the baseline NeuraLint.

TABLE VII: Impact of Analysis Techniques on NeuralState

NLBench HumbatovaBench
Approach Precision Recall Precision Recall

NeuralState 100.0% 74.0% 100.0% 67.5%
- w/o TSA 100.0% 38.7% 100.0% 42.1%

- w/o VP 83.7% 42.8% 84.0% 31.5%
NB. TSA stands for typeState analysis, and VP stands for value propagation.

Results. Table VII presents the results of the ablation study,
comparing the performance of NEURALSTATE with its two
variants on both benchmarks, NLBench and HumbatovaBench.
The full NEURALSTATE implementation, incorporating both
value propagation and typestate analysis, achieved the highest
precision and recall across both benchmarks.

When evaluating the variant without typestate analysis (w/o
TSA), a significant decrease in recall was observed on both
benchmarks: a 35.3% decrease on NLBench and a 25.5%
decrease on HumbatovaBench. This finding highlights the
substantial contribution of the typestate analysis technique in
detecting bugs related to control flow violations.

Conversely, the variant without value propagation (w/o VP)
exhibited a more substantial decline in recall on Humbatov-
aBench (36%) compared to NLBench (31.2%). This discrep-
ancy can be attributed to the higher prevalence of bugs related
to value violations and statements that co-change together in
HumbatovaBench, which the value propagation technique is
particularly adept at handling.

Overall, the ablation study validates our observation that
the combination of value propagation and typestate analysis
techniques effectively detect a diverse range of bugs with dif-
ferent characteristics, contributing to NEURALSTATE’s better
bug detection performance compared to existing tools.

#Layer
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10 15 20 25 30 35

NeuralState 1.7E-04*x + -9.81E-04 R² = 0.983 NeuraLint
9.2E-04*x + 0.158 R² = 0.872

Fig. 7: Time complexity of NEURALSTATE and NeuraLint on
detecting DL bugs. The x-axis represents the number of layers
and the y-axis represents the time cost (sec)

D. Time Complexity Comparison (RQ4)
Experimental Setup. To evaluate the scalability of NEURAL-

STATE and compare it with NeuraLint, we followed a similar
procedure as the one used in the NeuraLint study. We created
a set of deep learning programs with varying numbers of
layers: 10, 15, 20, 25, 30, and 35 layers. We then executed
these programs using both NEURALSTATE and NeuraLint and
measured their respective execution times. The coefficient of
determination (R2) was employed to quantify the goodness of
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fit, with a value closer to 1 indicating better scalability as the
number of layers increases.

Results. NEURALSTATE demonstrates a more efficient ex-
ecution than NeuraLint, as illustrated in Figure 7. As seen in
the figure, NEURALSTATE shows around 12% increase in R2

value when compared with NeuraLint.
The enhanced scalability of NEURALSTATE can be at-

tributed to its approach of using an abstract representation
for deep learning programs, called the NeuralState Sequence.
In contrast, NeuraLint relies on the external GROOVE tool
for graph checking, as mentioned in their publication [9].
This dependence on an external tool introduces additional
computational overhead and communication costs, leading to
longer execution times, as the codebase size increases.

VIII. LIMITATIONS AND THREATS TO VALIDITY

Generalizability. Currently, our approach supports Keras-
based DL programs. Adapting it to other frameworks like
PyTorch may require additional effort to account for API
differences. Additionally, NEURALSTATE only supports
FCNN and CNN. Extending it to support other network
architectures would broaden its applicability.

Specification Bias. Our approach utilizes DL specifications
and benchmarks from prior work [9], which may introduce
bias and limit the detection of certain bugs. To evaluate the
bias of our approach, we include an empirical evaluation on
unseen benchmark by Humbatova et al. [17]. However, in the
future, we plan to investigate automated or semi-automated
approaches to infer specifications from diverse codebases,
reducing potential bias and improving coverage.

Soundness or Completeness. Our approach prioritizes
soundness over completeness. This means that when our
method identifies a violation, there is, in fact, a violation.
However, there may be instances where our approach fails
to detect existing violations, leading to false negatives.
Continuous refinement and expansion of the specifications are
crucial to improve its ability to detect a wider range of bugs.

Internal Threats. Our results indicate a higher false
negative (FN) rate for bugs that cause program crashes
compared to other bug types. A closer analysis of FN reports
reveals that 46% were caused by a mismatch between the
input shape expected by the DL model and the actual shape
of the training dataset, as observed from Stack Overflow code
fixes. This issue arises due to a lack of information about
the training dataset, such as the number of classes or the
type of task (e.g., classification, regression). To address this
limitation, we plan to investigate the impact of incorporating
training dataset information and explore methods to integrate
it into our analysis.

IX. RELATED WORK

Here, we discuss the related studies on detecting deep
learning usage protocol violations, typestate analysis, and
value analysis.

Detecting Deep Learning Bugs. Various techniques have
been proposed to detect and prevent bugs in DL models [7],
[9], [10], [19]–[22]. Among these methods, [7], [11] focus
on detecting performance-related bugs at runtime. Similarly,
other approaches, such as [8], [20], [21] monitor the model’s
training to detect performance bugs on specific symptoms. In
contrast, NEURALSTATE employs an analysis that does not
require the dataset or model training. Amimla [23] constructs
an abstract representation of a DL program and ML pipeline. It
then builds a database of DL constraints for symbolic analysis
to pinpoint issues like dimension mismatches and incorrect
API calls. A direct comparison with Amimla is challenging
due to the tool’s unavailability. Theoretically, Amimla and
NeuralState differ in three aspects: program representation,
the specification design, and the type of analysis to identify
bugs. First, Amimla separately represents different stages of
model-building using graph representation and hash tables
without data dependencies. Second, Amimla uses a key-value
pair to store valid API usage, whereas NeuralState encodes
the specification as a finite state automaton. Lastly, Amimla
uses symbolic analysis to identify bugs, and NeuralState uses
typestate and value-propagation. The closest openly available
work to ours is Neuralint [9]. Neuralint is a static analysis tool
proposed by Nikanjam et al. [9]. It utilizes a meta-modeling
and graph transformation technique to identify DL bugs. While
Neuralint can detect common DL bugs, it reports a high rate
of false positives and negatives due to its inability to resolve
data dependencies and co-change statements. In comparison,
NEURALSTATE runs the analysis on top of a DL representation
that accounts for data dependence between statements and uses
context-sensitive typestate and value propagation to handle the
co-changing statement.

Typestate Analysis. Strom and Yemini [16] first introduced
the concept of typestate as a refinement to type systems.
CrySL [24] is a notable tool that uses typestate analysis and
data-flow analysis to specify usage protocols of cryptographic
APIs. While CrySL is shown to be effective at detecting
misuse of cryptographic APIs, it cannot be directly applied
to languages other than Java as it requires a compiler to
convert the rules. Recent studies [25]–[27] have also used
typestate analysis to detect traditional software vulnerabilities,
cloud APIs, and OS bugs. However, none of these approaches
consider DL bugs, which exhibit distinct data dependency
characteristics.

Value analysis. Several approaches [18], [28]–[31] use a
value-flow analysis technique to detect traditional software
bugs. One recent example is the Canary [18] approach, which
employs a thread-modular algorithm to capture data and in-
terference dependencies within a value-flow graph, addressing
bugs in concurrent programs.

X. CONCLUSION

In this paper, we present NEURALSTATE, an approach for
detecting bugs in deep learning programs that address the
limitations of state-of-the-art tools. The key insights behind
NEURALSTATE include capturing data dependencies among
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DL layers, reasoning about complex bug patterns that require
simultaneous modifications to multiple statements, and com-
bining typestate analysis with value propagation. Empirical
evaluations on two benchmarks containing real-world Keras
bugs demonstrate NEURALSTATE’s significant improvement
over the state-of-the-art tool, NeuraLint. The contributions of
this work include the introduction of the NeuralState Sequence
(NSS) representation and the development of a technique for
handling co-changing statements. Future work aims to explore
techniques for automating the construction of automaton spec-
ifications and its integration with bug detection tools.

REFERENCES

[1] Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning for
software engineering,” ACM Comput. Surv., vol. 54, no. 10s, sep 2022.
[Online]. Available: https://doi.org/10.1145/3505243

[2] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[3] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive
study on deep learning bug characteristics,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 510–520. [Online].
Available: https://doi.org/10.1145/3338906.3338955

[4] A. Gulli and S. Pal, Deep learning with Keras. Birmingham, United
Kingdom: Packt Publishing Ltd, 2017.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Informa-
tion Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
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