
CAPS: Code Abstraction-Based Pre-training
Strategy for Smaller Language Models for Code

Fraol Batole∗, Smit S. Patel†, Aashish Yadavally † Tien N. Nguyen †, and Hridesh Rajan∗
∗ Department of Computer Science, Iowa State University, Ames, IA, USA

∗{fraol, hridesh}@iastate.edu
† Computer Science Department, The University of Texas at Dallas, Dallas, TX, USA

∗{smitsoneshbhai.patel, aashish.yadavally, tien.n.nguyen}@utdallas.edu

Abstract—Large Language Models (LLMs) offer powerful
capabilities in several domains, including software engineering
tasks. However, utilizing the largest models for every use case,
such as code-related development, may not be necessary or
practical. One reason that hinders its practicality is the model’s
complexity. Therefore, effective training techniques are needed
to harness the power of language models.

Our work introduces CAPS, a pre-training strategy to effi-
ciently pre-train a transformer-based encoder-decoder model that
is less complex but still powerful for source code representation.
CAPS achieves comparable performance with LLMs by utilizing
source code abstractions to increase code regularity.

CAPS is the first pre-training strategy for LMs that lever-
ages different levels of abstraction in source code, including
code sequences (lexical), syntax (structural), token types (part-
of-speech), data types, and program dependencies (semantic).
CAPS strategy leverages code abstractions for its generalization
across different code occurrences. That is, two lexically different
statements in two methods/projects might actually possess the
same meaning/purpose. Thus, encoding the code sequences with
those abstraction annotations helps increase regularity with fewer
requirements on complex models and ultra-large training data.
Moreover, encoding code dependencies allows a model to learn
to distinguish the code occurrences where the lexical sequence is
the same but with different semantics.

With CAPS, we pre-trained a small model named LITECODER
and fine-tuned it for five downstream tasks: Code Clone Detec-
tion, Defect Detection, Code Translation, Code Summarization,
and Code Generation. We conducted experiments to show that
a much smaller model (60M number of parameters) is able to
achieve comparable or relatively better results on all those tasks.
The results on clone detection demonstrate that LITECODER
has a competitive performance and an F1 score of 95.4%. This
improvement is over large models for code, such as CodeT5+
(770M) and CodeGen-multi (350M), while our model has the least
model complexity. We showed that explicitly encoding program
dependency improves a model’s data flow understanding.

I. INTRODUCTION

Recent advances in deep learning (DL) and natural lan-
guage processing (NLP) have enabled several large language
models to implicitly learn the code patterns for several code-
related downstream tasks, including code clone detection, code
summarization, code generation, code search, etc. Pre-trained
Large Language Models (LLM), such as CodeT5 [1], GPT-
4 [2], and CodeGen [3], have emerged as a powerful tool that
can significantly impact developers’ activities. The ability to
complete or generate code is valuable to developers.

While these models offer substantial benefits, their adoption
also presents challenges. First, fine-tuning LLMs for specific
downstream tasks can be time-consuming and expensive. It re-
quires a significant amount of computational resources specific
to the target task. As the models grow, the cost required for
fine-tuning increases substantially, thus making it impractical
for organizations or developers with limited resources to lever-
age the benefits of fine-tuning. For example, GPT-3 contains
billions of parameters and could cost tens of millions of
dollars for pre-training. CodeT5+ and CodeGen-Multi contain
770M and 350M parameters, respectively. Second, the LLMs
have limits on the number of input tokens and high compu-
tational complexity. LLMs often restrict the length of input
text or code sequences that can be processed simultaneously.
Moreover, LLMs can have computational complexities that
increase quadratically with the length of the input [4]. These
limitations can pose challenges when dealing with longer
code snippets. Considering these challenges, it is important
to carefully evaluate the justification for using ultra-large
language models for code-related tasks that developers often
use in their daily work on regular workstations, desktops,
or laptops without high-power GPUs. While LLMs offer
powerful capabilities, utilizing the largest models for every use
case may not always be practical. Developers should assess the
specific requirements and consider alternative solutions that
balance efficiency, cost-effectiveness, and model size.

Several approaches aim to address those challenges from
different perspectives. Some propose the techniques to reduce
the complexity of a LLM [5], other approaches introduce the
techniques to prune the input data to reduce workload [6].
In this paper, we advocate for an approach that reduces
the demands on a Language Model’s complexity, including
the number of parameters and memory usage, while still
preserving its comparable effectiveness when fine-tuned for
a specific task. We introduce CAPS, a Code Abstraction-
based Pre-training Strategy designed for source code that is
capable of operating with a compact model via encoding
code abstractions directly from the input. Our intuition is
that a high level of code abstraction empowers a model to
learn with reduced complexity due to the higher level of
regularity in source code. With the abstractions on source
code, the instances of a code pattern with different lexical
sequences can be unified, and their regularity can be increased,

thus allowing the model to generalize its knowledge across
different instances of the same pattern, even with different
lexical sequences. By unifying code patterns and extracting
their common features, a model can focus on learning the
essential aspects of the patterns rather than being overwhelmed
by the variations in lexical sequences. Thus, this approach can
potentially reduce the complexity requirement on the model
and can generalize code patterns across training datasets.

Specifically, our insights are as follows. Source code writ-
ten in a programming language has unique characteristics
regarding the lexical, syntax, and semantic levels. First, two
lexically different statements in two methods or projects might
actually possess the same meaning/purpose. For example, let
us consider two statements int len = str.length() and int

l = s.length() in which len and l are of the same type int,
and str and s are of the same type String. Both statements
are the instances of the same code pattern with the same
meaning/purpose: “getting the length of a String object and
assigning it to an int variable”. Current LLMs are trained
with an ultra-large amount of code, however, only at the lexical
level. They would need a much larger amount of code to learn
that the two statements have shared the same meaning, leading
to more complex models.

Second, in contrast, two statements with the same lexical
sequence of code tokens might have different meanings and
purposes. For example, x.next can be an access to the field
next if x is a LinkedList object. However, x.next in a differ-
ent place could be part of the method call to the method next()

of a Scanner object. As another example, the type Document

appears in several popular libraries: com.google.gwt.dom.-

client.Document, org.eclipse.jface.text.Document, and
org.w3c.dom.Document. In different contexts, Document can
refer to a class in one of the different libraries.

We propose the abstractions for source code to accom-
modate the above characteristics. In addition to the lexical
tokens of source code, we integrate three different levels of
abstractions for code: token types (syntax/structural), code
sememes with data types (semantics), and code dependencies
(semantics). Despite that code abstractions have been applied
for other goals, we are the first to introduce them as a pre-
training strategy to address the model complexity.

For syntax, the grammar or syntactic rules of a program-
ming language enforces the appearance of certain tokens at a
position, helping a model learn better the code patterns. For
example, the requirement of the open parenthesis ‘(’ for a
function call is an indication that the prior token is a function
call as in s.length(). It helps a model distinguish a function
call from field access.

At the semantic level, we integrate both data types and
program dependencies. For example, both statements int

len = str.length() and int l = s.length() will be en-
coded as VAR[int] = VAR[String].length(). We expect
the model to recognize this code pattern from two lexi-
cally different statements. In contrast, program dependen-
cies enable a model to distinguish two code tokens with
the same lexeme but different semantics. For example, for

x.next, we will encode differently in the two cases of the
LinkedList and Scanner classes: FIELD [LinkedList,next]

and CALL [Scanner,next]. The former has a dependency
between x.next (CALL [LinkedList, next]) and x.hasNext

(CALL [LinkedList, hasNext]), while the latter does not
have a dependency with either next or hasNext of LinkedList.

We have conducted several experiments to evaluate our
pre-training strategy, CAPS. First, we used CAPS on the
CodeT5-small model and then performed fine-tuning on four
different tasks: Code Clone Detection, Code Translation, Code
Summarization, and Code Generation. We compared CodeT5-
small+CAPS against several baselines.

Our experimental results on the dataset, BigCodeClone [7],
show that the resulting model, CodeT5-small+CAPS (let us
call it LITECODER) achieved a comparable F1-score (95.4%)
as the state-of-the-art LLMs (SOTAs) in code clone detec-
tion. Importantly, in comparison with the SOTA large lan-
guage models CodeT5+ (770M), CodeGen-multi (350M), and
CodeT5 (220M), with CAPS pre-training strategy, CodeT5-
small, with less complexity (with only 60M parameters) and
much less training time, can achieve a comparable perfor-
mance. Similar results can be observed across all four tasks.
We also performed an ablation study to show that all the
levels of abstraction in our pre-training strategy contribute to
its high performance. Additionally, we show that explicitly
encoding code dependencies helps a LM capture better code
dependencies. In brief, the contributions of this paper include:

1. CAPS is the first pre-training strategy leveraging the
code abstractions on token types, syntaxes, data types, and
program dependencies. CAPS helps reduce the demand on
model complexity: with CAPS, a smaller model can achieve
comparable performance as more complex LLMs for code.

2. An empirical evaluation of LITECODER in five down-
stream tasks shows that due to better learning code patterns
(code clone detection), a smaller model achieves a comparable
performance as the state-of-the-art LLMs.

3. An empirical study shows that all code abstractions in
CAPS’s strategy contribute to our model’s performance.

Code and datasets are available on our website [8].

II. MOTIVATING EXAMPLE AND KEY IDEAS

A. Motivating Examples

We aim to find the abstractions that help a model to better
learn code patterns at a higher level with less complexity.

First, a code pattern is defined as a sequence that frequently
appears with the same meaning in source code. Some code
instances of a code pattern across different locations in the
same or different projects could share the same sequence of
lexical tokens and maintain the same semantics. Thus, we
must capture the lexical code sequences for code represen-
tation learning. For example, the code sequence that appears
frequently in Java projects is for (int i = 0; i < n; i++).

Observation 1 [Code Sequences]. A code pattern can be
represented in the lexical code sequences. Thus, a model needs
to capture the lexical code sequences.

2

Second, a code pattern can be specifically involved with a
certain statement type. Thus, annotating code tokens with their
token types, e.g., the keyword if, for, etc., or the identifiers,
will help a model capture the patterns with those statements
or identifiers. For example, in the previous code pattern with
the for loop, the keyword ‘for’ will help a model distinguish
it with the literal ‘for’ or the sub-string ‘for’ in a literal, etc.

Observation 2 [Token Types]. Token types are helpful for a
model to capture code patterns with specific program elements.

Third, the syntactic rules in a programming language in
the source code are important in a code pattern. It helps
a model recognize and distinguish between the code tokens
with the same lexical value but different meanings and roles
in the source code. For example, after a function call, Java
requires an open parenthesis ‘(’, allowing a model to know
that the previous token is a function name instead of a
field’s name. Therefore, a model can recognize that next in
x.next() should belong to LinkedList.next() rather than
Scanner.next. Moreover, several syntactic patterns have been
reported in previous work [9]. The following is a code pattern
called ”Loop Collector” to add elements into an arrayList.

1 for (final Element element1 :
o.getElements()) {

2 myElements.add(element1);
3 }

Observation 3 [Syntax]. The syntax of the programming
language is helpful for a model to learn a syntactic pattern
with specific syntactic structures.

Fourth, as explained in Section I, when we abstract a
variable V of the type T into VAR[T], it helps a model
distinguish the two ambiguous cases. For example, in the
code arr.append("A"), we will encode it as ARRAY[String].-
append(String). In a different project, even with a different
variable’s name, the model still can recognize the method call
append for any ARRAY variable.

Observation 4 [Variable Names and Data Types]. The
abstraction of the variable names and the data types help a
model better learn code patterns with different data types.

Finally, between two statements, there might exist pro-
gram dependencies. For example, there is a data dependency
between x.hasNext() and x.next() via the variable x. If
we encode this dependency, it will help a model distinguish
between x.next (a field access in Scanner) and x.next in
x.next() (a method call in LinkedList).

Observation 4 [Code Dependencies]. Encoding data and
control dependencies among program entities could benefit a
model in distinguishing between codes with the same lexical
sequence but with different meanings.
From the above observations, we draw the following key ideas.

Key Idea 1 [Pre-training Strategy Using Abstractions
on Source Code at Multiple Levels with a Less Complex
Language Model]. From our observations, CAPS exploits the
sources of information conveyed through multiple abstraction
levels: 1) Token types (part-of-speech) of the code tokens, 2)

Data types: if any, 3) Structure and syntax of the source code,
and 4) Program dependencies among the program elements.
We expect that with abstractions, a less complex model can
still learn the regularity of code patterns despite the instances
of the same pattern might have different lexical sequences.

With the code abstractions, the instances of a code pattern
with different lexical sequences can be unified, and their
regularity can be increased, thus, allowing the model to
generalize its knowledge across different instances of the same
pattern, even with different lexical sequences. With the better
generalization capability, we expect that a model with less
complexity can learn as well as the more complex ones (i.e.,
with higher numbers of parameters) in downstream tasks.

Key Idea 2 [Code Dependencies to Help Distinguish
Same Code with Different Semantics] To help a model dis-
tinguish between the code tokens with the same lexical value
but having different semantics, we integrate the dependencies
among the code tokens. For example, in the class LinkedList,
the methods hasNext and next often occur together. Moreover,
the class Scanner also has the field next, but it does not have
any field or method named hasNext. Therefore, we encode the
code dependency between two code tokens hasNext and next.
That helps the model make a distinction between next from
LinkedList and next from Scanner.

Key Idea 3 [Unified Representation Learning from
Multiple Abstraction Levels]. The token types, syntax, and
program dependencies can be represented via sequences, trees,
or graphs. However, using different types of models for each
kind of data would result in a computationally heavy model
and further post-processing. Therefore, to reduce the complex-
ity, we encode the data from all channels as sequences.

For the token types, we use a tokenizer to extract the types
of each token value. We use a technique in machine translation
to encode a syntactic structure via a syntactic symbol called
syntaxeme (syntactic symbols) [10]. Additionally, we also
encode the meaning and data type of each token called
data types. These two conceptual entities do not overlap but
rather complement each other. This is particularly useful in
cases where certain information, such as data types, might
be scarce in some programming languages like Python.
Therefore, in the pre-processing step, we combine them
as one abstraction named code sememe. For example,
for the code fragment ‘for j in range (len(holder))’,
we produce the syntaxeme sequence ‘FOR target[j] IN

starred[range[Call[len, para[holder]]]] begin[:].’
Syntaxemes have been shown to help capture the syntactic
structure for a model to learn the syntactic mappings between
two programming languages [10]. We expect them to help
CAPS capture the syntactic structure. Lastly, we encode the
dependencies of the tokens in different statements. We refer
to them as code dependency (see Section III-A2). Thus, we
have a unified representation of learning for all the levels of
abstraction used in our pre-training strategy.

3

Fig. 1: Overview of CAPS’s workflow.

III. METHODOLOGY

This section presents a high-level overview of our approach,
CAPS. As illustrated in Fig. 1, CAPS encompasses three core
modules: (A) constructing abstraction-based pre-training data,
(B) context learning via abstraction-based pre-training, and (C)
fine-tuning CAPS on downstream tasks.

A. Construct Abstraction-based Pre-training Data
To facilitate effective pre-training, we construct a dataset

that captures fundamental abstractions inherent in source code.
Our goal is to learn representations that encode not just the
program syntax but also their semantics and control/data flow.
We extract three types of code features: Token Types (TT),
Code Sememes (SM), and Program Dependencies (PD).
These abstractions were chosen to provide a comprehensive,
multi-level representation of code spanning its syntax, seman-
tics, and structure. Fig. 2 illustrates each abstraction.

1) Preliminaries: We first define the key concepts used in
our abstraction techniques:

Definition 1 (Token Types (TT)). Token types represent the
fundamental building blocks of a programming language’s
syntax, encompassing keywords, identifiers, literals, operators,
punctuation, and comments.

Definition 2 (Syntactic Units (SU)). Syntactic units, or
syntaxemes, are the fundamental building blocks of a program-
ming language’s grammar, representing the smallest meaning-
ful units of syntax within a program [10].

Definition 3 (Data Type (DT)). Data types specify the kind
of data a variable or expression can hold.

Definition 4 (Program Dependencies (PD)). Program depen-
dencies capture the relations between code elements, revealing
how different parts of the code influence each other. The two
main types of dependencies are control and data dependencies.

2) Extracting Code Abstractions: We extract the three code
abstractions, TT, SM, and PD, in the following process:

a) Token Type Abstraction: Given a code snippet CSi,
we first apply lexical analysis using a language-specific to-
kenizer T to break CSi into a token sequence T (CSi) =
[t1, t2, ..., tm]. Each token tk is then mapped to its token type
FTT (tk) based on the language grammar. Formally, we define
a token type mapping function FTT : t → TT that assigns
each token to one of six basic types: keyword, identifier,
literal, operator, punctuation, or comment. Extracting token
types allows the model to learn syntactic roles and composition
patterns. Fig. 2(b) shows the result of token type extraction.

b) Code Sememe Extraction: While TT captures syntac-
tic structure, they do not encode the rich semantic information
inherent in code. To address this, we introduce the concept of
code sememes, inspired by the notion of sememes in natural
language as fundamental units of meaning and prior work
on LLMs training [11]. Code sememes provide a semantic
abstraction that captures both syntactic structure and types.
By exposing these semantic properties to the model during
pre-training, we enable it to learn repetitive code patterns.

We define a code sememe as a composite representation
that encodes a code token’s data type and syntactic unit role
within the program context. Formally, for a code token tk in
a code snippet CSi, its code sememe SM(tk) is a tuple:

SM(tk) = ⟨SU(tk), DT (tk)⟩ (1)

where SU(tk) represents the syntactic unit (or syntaxeme) of
tk and DT (tk) represents its data type.

To extract code sememes, we parse CSi into an AST
AST (CSi), traverse it, and based on the AST context, we
map each tk to its syntaxeme SU(tk) and data type DT (tk).
Fig. 2(c) shows the result of code sememe extraction. Code
sememes enable the model to learn rich semantic patterns.

c) Program Dependency Abstraction: The final abstrac-
tion we extract is program dependencies, which capture the
relationships between code elements in terms of control flow
and data flow. This has been shown to be crucial for tasks that
require deep reasoning about program behavior, such as code
generation, translation, and bug detection [12].

Given a code snippet CSi, we define the program de-
pendency set PD(tk) for each token tk ∈ CSi that has
a direct control or data dependency with tk. Formally, let
T (CSi) = [t1, t2, . . . , tm] be the set of tokens in CSi. Then:

PD(tk) = {tj ∈ T (CSi)\{tk} | tj ⇝C tk∨ tj ⇝D tk} (2)

where ⇝C represents a control dependency and ⇝D repre-
sents a data dependency.

Intuitively, a token tj has a control dependency on tk if
the execution of tk depends on the branching behavior at tj ,
such as in an if statement or loop. A token tj has a data

4

1 ...
2 if (i < nums.length) {
3 info = holder.get();
4

5 list.append(info);
6 }
7

8 ...

(a) Original Code

1 ...
2 keyword [if] (id[i] < id[nums.length]) {
3 id[sum] op[+] op[=] id[nums[I]];
4 id[info] op[=] id[holder.get()] op[;]
5 id[list] op[.] id[append(info)] op[;]
6 }
7

8 ...

(b) Token Type Annotation

1 ...
2 if[binary_operation[var[i], <, CALL

[nums.length]]] begin[{]
3 assign[var[info], op[=],

CALL[holder.get()]]
4 CALL[list.append(info), PARAM[info]]]
5 end[}]
6 ...

(c) Code Sememe Annotation

1 ...
2 if (i < nums.length) {
3 info = holder.get(); # depends on

[control=[‘if’], data=[holder]]
4 list.append(info); # depends on

[control=[‘if’], data=[info]]
5 }
6 ...

(d) Dependency Annotation

Fig. 2: Three Abstraction-based Pre-training Data

dependency on tk if the value of tk depends on the value of
tj , such as when tj is assigned to a variable that is later used
in tk. The result of dependency extraction on CSi is thus a
sequence with an encoded comment as presented in Fig. 2(d).

To extract and encode program dependencies, we follow
these steps: First, we parse the code snippet CSi into its AST
representation AST (CSi) and perform a static analysis over
the AST to identify control and data dependencies between the
tokens. Then, for each token tk, we annotate it with a comment
indicating its dependency set PD(tk). The comment is placed
immediately after the token tk in the original code. In the case
of nested control flow structures (e.g., an ‘if’ statement within
a ‘for’ loop), we annotate each statement within the nested
structures with the appropriate dependencies. The final result
is a sequence of tokens from CSi with the encoded program
dependency annotations, as shown in Fig. 2(d).

The effectiveness of our abstraction-based pre-training ap-
proach is validated through extensive experiments on down-
stream tasks (see Section V). Combining token types, code
sememes, and program dependencies provides a comprehen-
sive, multi-level code representation that enables the model to
learn meaningful patterns on syntax, semantics, and structure.

B. Context Learning via Abstraction-based Pre-training

CAPS proposes three pre-training tasks to enhance the
model’s understanding of code abstractions: Code Sequence to
Token Type (CS-TT), Code Sequence to Code Sememe (CS-
SM), and Code Sequence to Program Dependency (CS-PD).
These objectives are designed to capture different abstraction
levels through a unified sequence-to-sequence learning.

Central to all objectives is the sequence-to-sequence mod-
eling approach, where the model learns to map an input code
sequence X to an output sequence Y . This objective design

is inspired by related work on naturalizing source code [13].
The loss function for each task T is defined as:

LT = −
N∑
i=1

log(P (yt|y<t, X)) (3)

Here, X is the input code sequence, yi is the target output
at position i, y<i represents the previous outputs, and N is
the length of the output sequence. By minimizing this loss,
the model learns to generate the desired output sequence
conditioned on the input code and previous predictions.

1) Objective CS-TT: The CS-TT objective aims to build
an understanding of code tokens and their token types. The
input X is a sequence of code tokens, and the target Y is the
corresponding sequence of token types. By learning to predict
token types, the model acquires knowledge of the syntactic
roles and composition of code elements.

2) Objective CS-SM: The CS-SM objective captures the
syntactic and semantic structure of code by learning to gener-
ate code sememes. Unlike prior work, e.g., CodeFill [11] that
models sememes as a next token prediction task, we formulate
it as a sequence-to-sequence problem. The input X is a code
sequence, and the target Y is the corresponding sequence of
code sememes. By generating code sememes, the model learns
the abstract syntactic and semantic structure beyond tokens.

3) Objective CS-PD: The CS-PD objective teaches the
model to reason about data and control dependencies. While
existing methods like GraphCodeBERT [12] explicitly encode
token connections by modifying the encoder architecture, we
model dependencies as a structured output sequence. The input
X is a code sequence, and the target Y is the same code
sequence augmented with dependency annotations.

4) Multi-task Pre-training with CAPs Loss: CAPS employs
a multi-task learning approach to jointly optimize the three

5

pre-training objectives. The final pre-training loss LCAPs(θ)
is a sum of the individual task losses:

min
θ

(LCS−TT (θ) + LCS−SM (θ) + LCS−PD(θ)) (4)

where θ represents the model parameters. Multi-task learning
enables the model to share knowledge across objectives and
learn robust code representations that capture multiple levels
of abstraction [14].

The choice of pre-training tasks is motivated by their
complementary nature in capturing different facets of code
understanding. CS-TT focuses on low-level syntactic informa-
tion, CS-SM captures abstract syntactic and semantic structure,
and CS-PD encodes program-level dependencies. By jointly
learning these objectives, CAPS aims to develop a compre-
hensive understanding of code beyond surface-level patterns.

C. Fine-Tuning CAPS on Downstream Tasks
The main goal of fine-tuning is to take the pre-trained model

with contexts and train it for any code-related downstream
tasks. Unlike the pre-training phase, the fine-tuning objective
exclusively utilizes code sequences for downstream tasks. In
this work, we extensively evaluate the effectiveness of CAPS
on five downstream tasks: (1) clone detection, (2), defect
detection, (3) code translation, (4) text-to-code generation, and
(5) code summarization (the details are in Section IV).

IV. EMPIRICAL EVALUATION

Our evaluation seeks to answer the following questions:
RQ1. How well does LITECODER perform compared to
state-of-the-art LLM approaches in code clone and defect
detection? This will validate whether our pre-training strategy
with code abstraction helps the model learn code patterns more
effectively.
RQ2. How well does LITECODER perform compared with
the state-of-the-art LLMs on code translation? The answer
will assess whether the pre-trained strategy with abstraction
provides an advantage in understanding and translating code
structures, syntax, semantics, and data flow across languages.
RQ3. How well does LITECODER perform compared with the
state-of-the-art LLM approaches on text-to-code generation?
This evaluation can help us answer whether the pre-training
objectives are beneficial for generative tasks.
RQ4. How well does LITECODER perform compared with the
state-of-the-art approaches on code summarization? Similar
to RQ3, this evaluation will help us assess the effectiveness
of CAPS on generative tasks.

The answers to RQ1–RQ4 (in)validate our hypothesis that
with our pre-training objectives, a smaller model like CodeT5-
small can perform at the comparable level as the larger LLMs
in the downstream tasks after being fine-tuned in the same
dataset. If LITECODER performs at the comparable level as
much larger LLMs, we can conclude that CAPS helps reduce
the requirement on the model complexity. That is, the same
level of performance can be achieved with a smaller model
that was pre-trained with CAPS strategy.

RQ5. Does explicitly encoding code dependencies help a
language model model capture better code dependencies? The
answer will confirm that abstractions, dependencies among
program elements help with code-related tasks.
RQ6. How do different pre-training objectives in CAPS
affect its overall performance? The answer will confirm each
designed component in CAPS. It will also confirm our hy-
pothesis that the abstractions unify the instances with different
lexical sequences of the same code patterns.

A. Experimental Methodology

Pre-training Procedure. We initialize CAPS from CodeT5-
Small [15] and further pre-trained it using our pre-training
objectives. LITECODER has 60M parameters. We implement
the pre-training step using Pytorch [16]. We use the following
pre-training hyperparameters: batch size of 32, learning rate
of 5e-5, and maximum input/target length of 1024. We then
pre-trained the model using CAPS objectives for 30K steps.
To avoid catastrophic forgetting, we alternate between each
language and each task after 5k steps. For example, if we
begin with the CS-TT task in Python, the next 5k training
data points will be for CS-TT in Java. Through an ablation
study, we confirmed that the order of tasks or language does
not affect performance. Therefore, we pre-train CAPS in the
following order: (1) CS-TT, (2) CS-SM, and (3) CS-PD. The
empty token index is assigned ‘-100’ to ensure padding tokens
are excluded during loss computation. We used 4 A100 GPUs
with 40GB memory to pre-train and fine-tune LITECODER on
different downstream tasks.

Pre-training Data. Following related works [1], [12], [15],
we used the CodeSearchNet [17] as the pre-training dataset
for LITECODER. Specifically, we filtered that dataset to select
Python and Java files that can be tokenized and parsed. As a
result, the total number of files we used is 453K Python and
495K Java files. We then used the Tokenizer, JavaLang, and
TreeParser libraries to extract the token type, code sememe,
and program dependency. Note that the pre-training dataset for
different models could be different; however, the fine-tuning
dataset has to be similar for a fair evaluation. We explain the
fine-tuning dataset in the following part.

Fine-Tuning Procedure. We selected five experiments for
downstream applications (three tasks, each for code under-
standing and generative tasks). In particular, for code under-
standing tasks, we use code clone detection, defect detection,
and code translation tasks. For generative tasks, we use text-
to-code generation and code summarization tasks. We follow
the standard fine-tuning protocol and implementation provided
by CodeXGlue [7] to ensure a fair evaluation. This entails
utilizing the same fine-tuning dataset, hyperparameters, and
evaluation metrics as those employed in the baselines. In
subsequent sections, we provide details regarding the dataset,
evaluation metrics, and basic hyperparameters. We direct in-
terested readers to prior literature on fine-tuning details and
the specifics [7].

Fine-Tuning Data. We use the following canonical datasets
for the five downstream tasks. We use the BigClone dataset

6

for code clone detection [18]. For defect detection, we use
the Devign [19] dataset. Defect detection is a classification
task to identify if a code may attack software systems, like
resource leaks, use-after-free vulnerabilities, and DoS attacks.
We use the dataset provided by CodeXGlue [7] for the code
translation. The dataset contains two formats. The first is for
translating Java to C#, while the second is for C# to Java.
We used the CONCODE text-to-code generation provided by
CodeXGlue [7] for the code generation task. It has textual
descriptions with the goal of generating Java code. Lastly, we
used the CodeXGlue code-to-text on Python and Java code for
the code summarization task [7].

Evaluation Metrics. We use the following metrics to eval-
uate the code translation task. Exact Match (EM) computes
accuracy based on perfect similarity between prediction and
ground truth. Syntax Match (SM) measures the similarity
of prediction and ground truth AST, focusing on the code’s
syntactic structure. Dataflow match (DM) measures the sim-
ilarity of dataflow edge between candidate and ground truth.
CodeBleu integrates the other metrics for a collective measure.

V. EMPIRICAL RESULTS

A. Comparison on Code Clone and Defect Detection (RQ1)

Baselines. The baselines include encoder-decoder models
like CodeT5 (60M) [15], CodeT5+ (220M) [20], and encoder-
only models like CodeBert [21] and GraphCodeBert (125M)
[12]. They represent recent advances in code representation
learning and have demonstrated strong performance on various
code understanding tasks, making them relevant comparisons
for LITECODER. For CodeT5-small, we run fine-tuning for all
experiments and present both the reported and rerun results.

Experimental Setup. In this research question, we compare
the effectiveness of our approach with ten state-of-the-art
language models for code clone and defect detection. To
evaluate the efficacy of our pre-training strategy, we fine-tune
LITECODER pre-trained model for the code clone and defect
detection tasks. For clone detection, we use a batch size of
16, a maximum source length of 320, a target length of 128,
and fine-tune for 1 epoch with an initial learning rate of 5e-5.
For defect detection, we change the maximum source length
to 512, target length to 3, and fine-tune for 10 epoch.

Model Name

0

1000

2000

3000

codet5p-770m NatGen codet5p-220M plbart-base CodeT5-small

Memory Use (MB) # Model Parameter (Million)

Fig. 3: Memory and # Model Parameter Comparison.

Model complexity. Fig. 3 illustrates the significant difference
in complexity between CodeT5-small/LITECODER and the

TABLE I: Results on Code Clone Detection

Model
Name

Clone
Detection

Defect
Detection

Recall Precision F1-score EM
CodeBERT (125M) 94.7 93.4 94.1 62.1
GraphCodeBERT (125M) 94.8 95.2 95.0 -
UniXcoder (125M) 92.9 97.6 95.2 -
CodeGen-multi (350M) 94.1 93.2 93.6 63.1
PLBART (140M) 94.8 92.5 93.6 63.2
CodeT5 (220M) 95.1 94.9 95.0 65.8
CodeT5p (220M) 96.4 94.1 95.2 66.1
CodeT5p (770M) 96.7 93.5 95.1 66.7
CodeT5p-small (60M) (Reported) 94.0 93.3 93.6 63.4
CodeT5p-small (60M) 94.5 94.6 94.3 62.7
LITECODER (60M) 95.6 95.3 95.4 63.8

baseline models. CodeT5-small and LITECODER has 60M
parameters, which is 95.45% smaller than CodeT5+ (770M),
the largest model in the comparison. Moreover, CodeT5-small
exhibits the least memory usage among all the models, making
it suitable for deployment on computationally less intensive
hardware. This highlights the potential of CAPS to achieve
competitive performance with a much smaller model size.

Results of Code Clone Detection. Table I presents the result
in code clone detection. We can see that CodeT5-small pre-
trained with CAPS (LITECODER) achieves the same level
of performance comparable to the baseline models in all
metrics. All the results are above 90%, indicating a high level
of performance. This highlights that pre-training CodeT5-
small with CAPS helps capture semantically equivalent pro-
grams, which is important for clone detection.

Since we pre-trained the CodeT5-small model with CAPS,
comparing it against the same model that has not been pre-
trained with CAPS is insightful. As seen in Table I, although
CodeT5-small has the same architecture and number of pa-
rameters, its results are lower than pre-training with CAPS.
Thus, the results show the advantages of CAPS in those tasks.

Example 1 (different lexemes but same meaning) (Clones)

1 public static byte[] ComputeForBinary(String ThisString)
throws Exception {

2 byte[] Result;
3 MessageDigest MD5Hasher;
4 MD5Hasher = MessageDigest.getInstance("MD5");
5 MD5Hasher.update(ThisString.getBytes("iso-8859-1"));
6 Result = MD5Hasher.digest();
7 return Result;
8 }

1 private static String digest(String buffer) {
2 try {
3 MessageDigest md5 =

MessageDigest.getInstance("MD5");
4 md5.update(buffer.getBytes());
5 return new String(encodeHex(md5.digest(key)));
6 } catch (NoSuchAlgorithmException e) {
7 }
8 return null;
9 }

Fig. 4: Example of Code Clones Detected by LITECODER

To better understand CAPS’s effectiveness, let us consider
the example in Fig. 4, where the model pre-trained with CAPS
was able to correctly identify the clones. In this example, the
two programs are lexically different, e.g., different function

7

names in line 1. The functions operate on MD5Hasher and
md5 in line 3, which have different variable names. Thus, to
detect clones precisely, it is important to recognize patterns
even though the statements include different lexemes.

Results of Defect Detection. Table I presents the results
of defect detection, where the effectiveness is measured by
the Exact Match (EM) metric. LITECODER achieves an EM
score of 63.8%, outperforming 4 out of the 10 baseline
models, including CodeBERT (125M), CodeGen (350M), and
PLBART (140M). Notably, LITECODER surpasses its initial-
ization model, CodeT5-small, by 1.1 percentage points despite
having the same architecture and number of parameters. This
improvement can be attributed to our pre-training strategy,
which enhances the model’s ability to capture code semantics.

TABLE II: Code translation result. EM: exact match; SM:
syntax match; DM: data-flow match; CB: CodeBlue

Approach Java → C# C# → Java
EM SM DM CB EM SM DM CB

PBSTM (-) 12.5 - - 42.7 16.1 - - 43.5
CodeBERT (119M) 59.0 - - 85.1 58.8 - - 79.4
SPT-Code (262M) 64.1 - - - 60.2 - - -
PLBART (350M) 64.6 - - 87.9 65.0 - - 85.3

CodeT5 (reported) 65.9 - - - 66.9 - - -

GraphCodeBert (125M) 59.4 - - - 58.8 - - -
CodeT5 (60M) (Reported) 64.1 - - - 65.0 - - -
CodeT5 (220M) 65.9 90.4 91.9 87.8 66.0 90.4 88.9 84.4
NatGen (220M) 66.2 91.0 92.0 88.1 67.3 91.0 89.8 85.2
CodeT5 (60M) 56.0 86.2 87.8 82.6 60.2 86.7 87.9 81.6
LITECODER (60M) 62.0 88.0 90.0 83.9 62.0 88.4 90.2 84.0

B. Comparison on Code Translation Tasks (RQ2)

Baselines. For code translation tasks, we compare our ap-
proach against the following state-of-the-art baseline models,
selected based on the work by Chakraborty et al. [13] such
as SPT-Code (262M) [22], a transformer-based model; and
NatGen (220M) [13], a language model for code generation.

Experimental setup. For this experiment, we use the
CodeT5-small (60M parameters) model pre-trained with
CAPS. We fine-tune this pre-trained model on the CodeXGlue
dataset [7], which includes Java-to/from-C# translation tasks.
It is noteworthy that while the pre-training corpus did not
include C# code, this evaluation also serves to assess whether
CAPS pre-training leads to catastrophic forgetting or retains
knowledge from prior training. To fine-tune, we use the
learning rate as 5e-5, the batch size is 32, the source length
is 320, and the target length is 128. We run the model for 30
epochs until it converges.

Model complexity. We utilize the same model with same
complexity as RQ1.

Results of Code Translation Tasks. Table II presents the re-
sults for Java-to-C# and C#-to-Java translation tasks. LITE-
CODER demonstrates competitive performance compared to
the state-of-the-art models, despite having fewer parameters.

In the Java-to-C# translation task, LITECODER achieves an
exact match (EM) score of 62.0%, which is 4.2 percentage
points lower than the best-performing model, NatGen (220M).

However, it is important to note that NatGen has nearly
four times more parameters than LITECODER (60M). When
compared to the models with a similar number of parameters,
such as CodeBERT (119M) and GraphCodeBERT (125M),
LITECODER improves over them by 3.0 and 2.6 percentage
points, respectively.

For the C#-to-Java translation task, LITECODER exhibits a
similar trend. It achieves an EM score of 62.0%, which is 5.3
percentage points lower than NatGen (220M). Nevertheless,
LITECODER surpasses CodeBERT and GraphCodeBERT by
3.2 percentage points each, demonstrating its effectiveness in
code translation despite its smaller size.

Notably, LITECODER shows a relatively better data-flow
match (DM) score of 90.2% in the C#-to-Java translation
task compared to the state-of-the-art model NatGen, which
achieves 89.8%. This improvement can be attributed to the
program dependency component in CAPS, which explicitly
captures control and data dependencies during the pre-training
phase. By teaching the smaller model to recognize these
dependencies, LITECODER enhances its ability to understand
and preserve data flows during the translation process.

Furthermore, LITECODER outperforms the vanilla CodeT5
model with the same number of parameters (60M) by 6.0 and
1.8 percentage points in the EM scores for Java-to-C# and
C#-to-Java translation tasks, respectively. This improvement
demonstrates the effectiveness of the CAPS pre-training strat-
egy in enhancing the model’s code translation capabilities.

Furthermore, it is worth highlighting that LITECODER also
achieves competitive results in other metrics while exhibiting
significantly lower memory usage and number of parameters as
seen in Fig. 3. In conclusion, these results underscore that the
pre-training of CodeT5-small with CAPS retains knowledge.
The results indicate that pre-training a smaller model with
CAPS for different programming languages and downstream
tasks is a promising avenue for development.

C. Comparison on Text-to-Code Generation (RQ3)

TABLE III: Text-to-Code Generation result. EM: Exact Match,
SM: Syntactic Match, DM: Dataflow Match, CB: CodeBleu.
‘-’ indicates that the model parameters are not present.

Approach Metrics
EM SM DM CB

Seq2Seq (-) 3.05 - - 26.39
Guo et al. [23] (-) 10.05 - - 29.46
Iyer et al. [24] (-) 12.2 - - -
GPT-2 (117M) 17.3 - - 29.69
CodeGPT (124M) 20.1 - - 35.98
PLBART (140M) 18.75 - - 38.52
CodeT5-base (220M) 22.3 - - 43.0
CodeT5-small (60M) (Reported) 21.55 - - 41.39
NatGen (220M) 22.3 45.59 46.87 43.73
CodeT5-small (60M) 21.05 74.9 29.26 59.76
LITECODER (60M) 21.30 74.34 45.44 62.80

Baselines. We compare our approach against large models
used as baselines in recent SOTA models on code generation
task [13]. The baselines are fine-tuned and evaluated using the
same canonical benchmark as our work. Therefore, the results

8

reported are taken from the CodeXGLUE [7] leaderboard and
NatGen work [13]. The benchmark has the text description to
generate Java code. We have included the following decoder-
based models: Seq2Seq (-) [13], Guo et al. [23], Iyer et al.
[24], GPT-2 (117M) [7], and CodeGPT (124M) [25].

Experimental setup. We fine-tune LITECODER using the
same procedure and benchmark as in CodeXGlue [7]. In
particular, the learning rate is 5e-5, the batch size is 32, the
source length is 320, and the target length is 128. We run the
model for 30 epochs until it converges.

Model complexity. We utilize the same model with same
complexity as RQ1.

Results of Text-to-Code Generation Tasks. Table III
presents the results for the text-to-code generation tasks.
LITECODER achieves an exact match (EM) score of
21.30%, which is comparable to the state-of-the-art models
CodeT5-base (22.3%) and NatGen (22.3%), despite having
significantly fewer parameters (60M vs. 220M). Importantly,
LITECODER shows comparable results and outperforms
vanilla CodeT5-small (60M) by 3 percentage points on the
CodeBleu score, demonstrating the effectiveness of the CAPS
pre-training strategy.

In terms of syntactic match (SM), LITECODER achieves a
score of 74.34%, surpassing all the baseline models except
for CodeT5-small, which achieves a slightly higher score of
74.9%. This strong performance in syntactic matching can be
attributed to the inclusion of code sememes in the CAPS pre-
training strategy, which explicitly exposes the model to the
syntactic structure of the programming language.

D. Comparison on Code Summarization Task (RQ4)

In this experiment, we evaluate the effectiveness of CAPS
on a generative task that distinguishes itself from the preceding
tasks as it involves creating textual descriptions.

Baselines. We use the following baselines: PLBart, CodeT5,
and NatGen [13].

Experimental setup. As with the previous RQs, we ran
LITECODER on code summarization task. Following baseline
models, we use the CONCODE [7] dataset to fine-tune and
evaluate LITECODER. Since our pre-training strategies were
only introduced for Java and Python, we only evaluated the
code summarization approach in those two languages. To fine-
tune, we use the learning rate as 5e-5, the batch size is 32,
the source length is 320, and the target length is 128. We run
the model for 15 epochs until it converges.

Model complexity. We utilize the same model with same
complexity as RQ1.

Results of Code Summarization Tasks. Table IV presents
the results of LITECODER on the code summarization task. Al-
though LITECODER achieves competitive performance com-
pared to some of the baselines, it falls short on Python
and Java compared to the larger models such as CodeT5+
and NatGen. Code summarization is a challenging task that
involves generating textual descriptions from code, which is
not explicitly emphasized in CAPS’s objectives.

TABLE IV: Results on Code Summarization in BLUE scores

Languages Approach
PLBart
(140M)

CodeT5-base
(220M)

CodeT5+
(770M)

NatGen
(220M)

CodeT5
(60M) (Reported)

CodeT5
(60M)

LITECODER
(60M)

Python 19.3 19.56 20.47 20.09 20.04 19.44 19.45
Java 18.45 20.31 20.83 20.38 20.09 19.35 19.54

E. Probing of CS-PD Pre-training Objective (RQ5)

Experimental setup. Similar to [26], we adopt a token
perturbation-based probing approach for this purpose. Code
dependencies are important in our pre-training strategy as they
help a model distinguish the code tokens with the same lexical
sequence but having different meanings. In this experiment, we
aim to show that a model learns the code dependencies via our
pre-training objective.

Specifically, we show the performance gains by the inclu-
sion of the Program Dependency pre-training objective, i.e.,
between rows (3) and (4) in Table V. As a result, we chose to
analyze and interpret the structural knowledge encoded within
LITECODER. Due to its parameter-free design paired with
better interpretability, we adopt a token perturbation-based
probing approach for this purpose. The primary concept behind
this probing technique is to evaluate the influence that one
code token has on another within a dependency relation. For
example, consider the code sequence: c = {c1, c2, ..., cN}.
Among these, let us assume a program dependence relation
between the code tokens ci → cj . When c is input to a pre-
trained model M with network parameters θ, it contextualizes
all tokens in c, wherein the latent representation for ci can
be denoted with Mθ(c)i. The impact of ci on cj can be per-
turbedly computed as follows: first, replace ci in c with [MASK]

to compute Mθ(c \ {ci})i; next, replace both ci and cj in c
with [MASK] to compute Mθ(c\{ci, cj})i; finally, compute the
distance between both these latent representations for ci, i.e.,
between Mθ(c\{ci})i and Mθ(c\{ci, cj})i. Mathematically:

Impact(ci, cj) = Lp

{
Mθ(c \ {ci})i, Mθ(c \ {ci, cj})i

}
(5)

where Lp{.} denotes p-norm distance.

TABLE V: Impact of Program Dependency pre-training ob-
jective via token perturbation-based probing

Pre-Training
Objective Metric Program Dependence Relations

for if-else try-except Overall

w/o CS-PD L1{.} 44.91 22.2 26.68 25.18
L2{.} 3.53 1.75 2.1 1.98

w/ CS-PD L1{.} 60.55 22.2 30.47 37.23
L2{.} 4.75 1.75 2.39 2.92

Results. In Table V, we present the average impact thus
computed for three frequently occurring token-level control
dependency relations: for, if-else, and try-except. For
convenience, we measure the impact of a code token split
into multiple sub-tokens by considering just the impact given
by the first token. We employ both L1 and L2-norm distance
metrics for two pre-training objectives in CAPS with different
network parameter settings: (a), without CS-PD (say, Mθ1),
i.e., CS-TT + CS-SM; (b) with CS-PD (say, Mθ2), i.e., CS-TT +

9

TABLE VI: Impact of pre-training objectives

Method Tasks
Defect Detection

(EM)
Translate

(EM/SM/DM/CB)
Clone Detection

(Rec/Pr/F1)
LiteCoder 63.8 62.0/88.4/90.2/84.0 95.1/95.3/95.4
- w/o CS-TT 55.6 58.6/82.5/78.8/76.0 95.4/87.5/91.3
- w/o CS-SM 56.6 57.6/82.2/79.2/75.8 95.2/87.8/91.3
- w/o CS-PD 57.2 57.9/82.7/79.5/76.2 95.1/88.5/91.7

CS-SM + CS-PD. We can see that LITECODER with the pre-
training setting that includes CS-PD records a higher impact
than that without CS-PD for all dependencies. Moreover, the
approach is also distance metric-invariant, as we observe an
overall improvement of 47.86% and 47.47% for both L1 and
L2-norm distance metrics, respectively. Thus, based on the
impact scores computed via two-stage perturbation, we can
see that explicitly encoding CS-PD helps successfully learn
data and structural dependencies between the code tokens.
Such an analysis can also be extended to other relations in
future work.

F. Impact of Pre-training Objectives (RQ6)

Experimental setups. We conducted an ablation study fo-
cused on three variants of LITECODER, each without one
pre-training objective. Specifically, the models are trained as
follows: (1) w/o CS-TT task, (2) w/o CS-SM, and (3) w/o
PD. Prior works on LMMs for code [12], [20] inspire the
experimental design to construct the models. We select three
downstream tasks (i.e., defect detection, clone detection, and
translation) to evaluate the ablation study.

Results. Table VI presents the results of the ablation study,
showcasing the impact of each pre-training objective on the
model’s performance in different tasks. The complete LITE-
CODER achieves the best results across all tasks, demonstrat-
ing the effectiveness of the unified pre-training strategy.

While removing the CS-TT objective leads to the most
significant performance drop, with a decrease of 8.2 points
in the defect detection EM score and an average decline of
7.2 points across the translation metrics, the CS-SM and CS-
PD objectives also play crucial roles. The CS-SM objective,
which captures semantic information by combining syntactic
units and data types, results in a 7.2-point drop in the defect
detection EM score and an average decrease of 7.5 points
in the translation metrics when removed. On the other hand,
the CS-PD objective, which encodes PD, demonstrates its
effectiveness in capturing code structure and behavior, as
evident from the 10.7-point drop in the translation DM score
when removed.

VI. LIMITATIONS AND THREATS TO VALIDITY

Noise introduced by the parser: We only build the parser
to extract features from common Python and Java statements.
However, it’s important to acknowledge that this focused
approach may introduce noise if unsupported statements are
parsed using our tool. To comprehensively understand the im-
provement, it will be crucial to expand the parser’s capabilities
to accommodate a broader range of statements in the future.

CAPS’s Parameters and Training: CAPS’s parameters
were initialized from the CodeT5-small model and then further
trained for 30K steps. One might question whether the im-
provement in the performance is due to the increased training
or the introduction of our pre-training objectives. However, as
noted by [13], CodeT5 did not show improved performance
with further training using the original CodeT5 objective.

External Threats: It is important to note that CAPS is
exclusively pre-trained on Python and Java benchmarks similar
to PLBart [27] and DietCode [6], which could potentially
limit applicability to other PL’s. Nevertheless, it is feasible to
develop a parser for other languages to extract the abstractions.
Currently, we only evaluated our proposed pre-training strat-
egy in one model CodeT5-small and one fine-tuning dataset.
More experiments are needed to evaluate the impact of CAPS
pre-training on different models and other datasets.

VII. RELATED WORK

Language models for Code Understanding: Several ap-
proaches have leveraged deep learning to detect code clones
and code patterns [28]–[31]. While some use graph-based
techniques [32], [33], others utilize a Neurosymbolic-based
approach [34] and large language model [35]. GraphCode-
Bert [12] introduces a data-flow aware encoder-based pre-
trained model. This model encodes source code, comments,
and data flow information to predict data flow edges between
variables. In contrast, our approach introduces a pre-training
objective that extends beyond variables to detect control de-
pendencies in the code.

Language models for Code Generation: Several approaches
have applied ML/DL for code representation. DNN4C [36]
uses three code sequences at lexical, syntactical, and semantic
levels with the DNN language model for CC. TravTrans+ [37]
encodes the AST information to feed it into a transformer to
take advantage of code structures. In contrast, CAPS further
abstracts the AST to take sequences as input. CodeFill [11]
aims to integrate both the natural language channel (token
value sequences) and the syntactic channel (token type se-
quences). Compared to our technique, DNN4C and CodeFill
introduce a causal language modeling objective to predict the
next token, where CAPS designs the objective as a sequence-
to-sequence language modeling. [38] propose to learn to com-
plete code with a sketch. The goal of their model is to learn
to minimize the number of holes. UniXCoder [39] introduces
a unified learning approach to generate code based on the
AST and code comments. Compared to our work, UniXCoder
directly converts the AST into a sequence, while our approach
first abstracts away the tree. NatGen [13] proposes a pre-
training objective to “naturalize code” using a transformer
encoder-decoder model. Lastly, DietCode [6] introduced an
approach to pruning the input to the model with the goal
of reducing the training time of pre-trained models. While
DietCode focuses on minimizing input size for more efficient
training, our goal is pre-training with code abstractions.

10

VIII. CONCLUSION

This paper introduces CAPS, a novel pre-training objective
designed to enhance source code representation for a smaller
language model called LITECODER. By explicitly encoding
programming language features, it improves LITECODER’s
ability to represent source code with reduced complexity.
CAPS achieves competitive performance across various down-
stream tasks, including code clone detection, defect detec-
tion, code translation, code summarization, and text-to-code
generation. Using a 60M-parameter encoder-decoder trans-
former architecture pre-trained with CAPS on Python and
Java, LITECODER demonstrates promising results, including
a 95.4% F1 score in code clone detection. Despite its lower
complexity, LITECODER performs comparably well in five
different code-related tasks. Future work may explore addi-
tional programming language-based abstractions and evaluate
different architectures and model sizes.

REFERENCES

[1] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5:
Identifier-aware unified pre-trained encoder-decoder models for
code understanding and generation,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 8696–8708. [Online].
Available: https://aclanthology.org/2021.emnlp-main.685

[2] “OpenAI,” https://openai.com/.
[3] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,

and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint, 2022.

[4] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with
selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.

[5] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[6] Z. Zhang, H. Zhang, B. Shen, and X. Gu, “Diet code is
healthy: Simplifying programs for pre-trained models of code,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2022. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1073–1084. [Online]. Available:
https://doi.org/10.1145/3540250.3549094

[7] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou,
M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng,
S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset
for code understanding and generation,” CoRR, vol. abs/2102.04664,
2021.

[8] “Replication package for caps.” 08 2023. [Online]. Available:
https://zenodo.org/records/10858998

[9] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton,
“Graph-based mining of in-the-wild, fine-grained, semantic code change
patterns,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019, pp. 819–830.

[10] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Divide-and-
conquer approach for multi-phase statistical migration for source
code,” in Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’15. IEEE Press, 2015,
p. 585–596. [Online]. Available: https://doi.org/10.1109/ASE.2015.74

[11] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-
token code completion by jointly learning from structure
and naming sequences,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. Association
for Computing Machinery, 2022, p. 401–412. [Online]. Available:
https://doi.org/10.1145/3510003.3510172

[12] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[13] S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu, and B. Ray, “Natgen:
generative pre-training by “naturalizing” source code,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 18–
30.

[14] F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-
trained language model for code completion,” in Proceedings of the
35th IEEE/ACM International Conference on Automated Software En-
gineering, 2020, pp. 473–485.

[15] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5:
Identifier-aware unified pre-trained encoder-decoder models for
code understanding and generation,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 8696–8708. [Online].
Available: https://aclanthology.org/2021.emnlp-main.685

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[17] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[18] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 476–480.

[19] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[20] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. H. Hoi,
“Codet5+: Open code large language models for code understanding and
generation,” arXiv preprint, 2023.

[21] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained
model for programming and natural languages,” in Findings of
the Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, Nov. 2020, pp. 1536–1547.
[Online]. Available: https://aclanthology.org/2020.findings-emnlp.139

[22] C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “Spt-
code: Sequence-to-sequence pre-training for learning source code
representations,” in Proceedings of the 44th International Conference
on Software Engineering, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 2006–2018. [Online].
Available: https://doi.org/10.1145/3510003.3510096

[23] D. Guo, D. Tang, N. Duan, M. Zhou, and J. Yin,
“Coupling retrieval and meta-learning for context-dependent semantic
parsing,” in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, Jul. 2019, pp. 855–866. [Online]. Available:
https://aclanthology.org/P19-1082

[24] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping
language to code in programmatic context,” in Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing. Brussels, Belgium: Association for Computational
Linguistics, Oct.-Nov. 2018, pp. 1643–1652. [Online]. Available:
https://aclanthology.org/D18-1192

[25] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[26] Z. Wu, Y. Chen, B. Kao, and Q. Liu, “Perturbed masking: Parameter-
free probing for analyzing and interpreting bert,” arXiv preprint
arXiv:2004.14786, 2020.

[27] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-
training for program understanding and generation,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Online:
Association for Computational Linguistics, Jun. 2021, pp. 2655–2668.
[Online]. Available: https://aclanthology.org/2021.naacl-main.211

[28] M. Zubkov, E. Spirin, E. Bogomolov, and T. Bryksin, “Evaluation of
contrastive learning with various code representations for code clone
detection,” arXiv preprint arXiv:2206.08726, 2022.

11

[29] D. Perez and S. Chiba, “Cross-language clone detection by learning over
abstract syntax trees,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 518–528.

[30] M. A. Yahya and D.-K. Kim, “Cross-language source code clone
detection using deep learning with infercode,” arXiv preprint
arXiv:2205.04913, 2022.

[31] S. N. Pinku, D. Mondal, and C. K. Roy, “Pathways to leverage transcom-
piler based data augmentation for cross-language clone detection,” arXiv
preprint arXiv:2303.01435, 2023.

[32] D. Yu, Q. Yang, X. Chen, J. Chen, and Y. Xu, “Graph-based code seman-
tics learning for efficient semantic code clone detection,” Information
and Software Technology, vol. 156, p. 107130, 2023.

[33] A. Nair, A. Roy, and K. Meinke, “funcgnn: A graph neural network
approach to program similarity,” in Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2020, pp. 1–11.

[34] K. Hasija, S. Pradhan, M. Patwardhan, R. K. Medicherla, L. Vig, and
R. Naik, “Neuro-symbolic zero-shot code cloning with cross-language
intermediate representation,” arXiv preprint arXiv:2304.13350, 2023.

[35] A. Zhang, L. Fang, C. Ge, P. Li, and Z. Liu, “Efficient transformer with
code token learner for code clone detection,” Journal of Systems and
Software, vol. 197, p. 111557, 2023.

[36] A. T. Nguyen, T. D. Nguyen, H. D. Phan, and T. N. Nguyen, “A deep
neural network language model with contexts for source code,” in 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2018, pp. 323–334.

[37] S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by feeding
trees to transformers,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), 2021, pp. 150–162.

[38] D. Guo, A. Svyatkovskiy, J. Yin, N. Duan, M. Brockschmidt, and M. Al-
lamanis, “Learning to complete code with sketches,” in International
Conference on Learning Representations, 2022.

[39] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin,
“UniXcoder: Unified cross-modal pre-training for code representation,”
in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland:
Association for Computational Linguistics, May 2022, pp. 7212–7225.
[Online]. Available: https://aclanthology.org/2022.acl-long.499

12

